Solve for [tex]$x$[/tex].

[tex]9^{2x-5} = 3^{x^2+11x-18}[/tex]

If there is more than one solution, separate them with commas.

[tex]x = \_\_\_\_\_\_\_\_\_\_\_\_[/tex]



Answer :

To solve the equation
[tex]\[ 9^{2x - 5} = 3^{x^2 + 11x - 18}, \][/tex]
we'll start by expressing the equation with the same base. Notice that [tex]\( 9 \)[/tex] can be written as [tex]\( 3^2 \)[/tex].

First, rewrite [tex]\( 9 \)[/tex] as [tex]\( 3^2 \)[/tex]:
[tex]\[ (3^2)^{2x - 5} = 3^{x^2 + 11x - 18} \][/tex]

Next, simplify the left side of the equation:
[tex]\[ (3^2)^{2x - 5} = 3^{(2)(2x - 5)} = 3^{4x - 10} \][/tex]

So the equation becomes:
[tex]\[ 3^{4x - 10} = 3^{x^2 + 11x - 18} \][/tex]

Since the bases are now the same, we can set the exponents equal to each other:
[tex]\[ 4x - 10 = x^2 + 11x - 18 \][/tex]

Move all the terms to one side of the equation to set it to zero:
[tex]\[ 0 = x^2 + 11x - 18 - 4x + 10 \][/tex]

Simplify the equation:
[tex]\[ 0 = x^2 + 7x - 8 \][/tex]

We solve this quadratic equation by factoring or using the quadratic formula. Factoring gives:
[tex]\[ x^2 + 7x - 8 = (x + 8)(x - 1) \][/tex]

Setting each factor to zero:
[tex]\[ x + 8 = 0 \quad \text{or} \quad x - 1 = 0 \][/tex]

Solving these equations, we find:
[tex]\[ x = -8 \quad \text{or} \quad x = 1 \][/tex]

Therefore, the solutions to the equation [tex]\( 9^{2x - 5} = 3^{x^2 + 11x - 18} \)[/tex] are:
[tex]\[ x = -8, \quad x = 1 \][/tex]