Solve the inequalities:

[tex]\[
12x + 7 \ \textless \ -11 \quad \text{AND} \quad 5x - 8 \geq 40
\][/tex]

Choose one answer:

(A) [tex]\( x \ \textless \ -\frac{3}{2} \)[/tex] or [tex]\( x \geq \frac{48}{5} \)[/tex]
(B) [tex]\(-\frac{3}{2} \ \textless \ x \leq \frac{48}{5} \)[/tex]
(C) [tex]\( x \ \textgreater \ \frac{3}{2} \)[/tex] or [tex]\( x \leq \frac{48}{5} \)[/tex]
(D) There are no solutions
(E) All values of [tex]\( x \)[/tex] are solutions



Answer :

To solve the given compound inequalities, we'll address each inequality separately and then combine the results. Here are the steps:

### First Inequality: [tex]\( 12x + 7 < -11 \)[/tex]
1. Subtract 7 from both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 12x + 7 - 7 < -11 - 7 \][/tex]
[tex]\[ 12x < -18 \][/tex]

2. Divide both sides by 12 to solve for [tex]\( x \)[/tex]:
[tex]\[ x < \frac{-18}{12} \][/tex]
[tex]\[ x < -\frac{3}{2} \][/tex]

### Second Inequality: [tex]\( 5x - 8 \geq 40 \)[/tex]
1. Add 8 to both sides to isolate the term with [tex]\( x \)[/tex]:
[tex]\[ 5x - 8 + 8 \geq 40 + 8 \][/tex]
[tex]\[ 5x \geq 48 \][/tex]

2. Divide both sides by 5 to solve for [tex]\( x \)[/tex]:
[tex]\[ x \geq \frac{48}{5} \][/tex]
[tex]\[ x \geq 9.6 \][/tex]

### Combining the Solutions
The solutions to the compound inequalities are [tex]\( x < -\frac{3}{2} \)[/tex] or [tex]\( x \geq 9.6 \)[/tex]. Since the solutions do not overlap and cover separate regions on the number line, we use the logical "or" to combine them.

Therefore, the correct solution is:
(A) [tex]\( x < -\frac{3}{2} \)[/tex] or [tex]\( x \geq \frac{48}{5} \)[/tex]