Solve for [tex]\( x \)[/tex]:
[tex]\[ 3^{x^2 - 8x + 15} = 81^{2 - 4x} \][/tex]

If there is more than one solution, separate them with commas.

[tex]\[ x = \][/tex]



Answer :

To solve the equation:

[tex]\[3^{x^2 - 8x + 15} = 81^{2 - 4x}\][/tex]

we need to use some properties of exponents and logarithms for solving it step by step.

1. Notice that [tex]\(81 = 3^4\)[/tex]. Therefore, we can rewrite [tex]\(81^{2 - 4x}\)[/tex] as:
[tex]\[ 81^{2 - 4x} = (3^4)^{2 - 4x} = 3^{4(2 - 4x)} = 3^{8 - 16x} \][/tex]

2. Now, we have the equation:
[tex]\[ 3^{x^2 - 8x + 15} = 3^{8 - 16x} \][/tex]

Because the bases (3) are the same, we can equate the exponents:
[tex]\[ x^2 - 8x + 15 = 8 - 16x \][/tex]

3. Simplify the equation:
[tex]\[ x^2 - 8x + 15 = 8 - 16x \][/tex]

Move all terms to one side to set the equation to zero:
[tex]\[ x^2 - 8x + 15 - 8 + 16x = 0 \][/tex]

Combine like terms:
[tex]\[ x^2 + 8x + 7 = 0 \][/tex]

4. Factor the quadratic equation:
[tex]\[ x^2 + 8x + 7 = (x + 7)(x + 1) = 0 \][/tex]

5. Set each factor equal to zero:
[tex]\[ x + 7 = 0 \quad \text{or} \quad x + 1 = 0 \][/tex]

Solve for [tex]\(x\)[/tex]:
[tex]\[ x = -7 \quad \text{or} \quad x = -1 \][/tex]

Thus, the solutions to the equation are:
[tex]\[ x = -7, -1 \][/tex]