Solve the equation [tex]$25b^2 - 64 = 0$[/tex] by factoring.

What are the solutions to the equation?

A. [tex]$5, 8$[/tex]
B. [tex][tex]$5, -8$[/tex][/tex]
C. [tex]$\frac{8}{5}, -\frac{8}{5}$[/tex]
D. [tex]$\frac{5}{8}, -\frac{5}{8}$[/tex]



Answer :

Let's solve the equation [tex]\( 25b^2 - 64 = 0 \)[/tex] step-by-step.

1. Isolate the quadratic term: First, we need to express the equation such that we can solve for [tex]\( b \)[/tex]. Start by moving 64 to the right side:
[tex]\[ 25b^2 - 64 + 64 = 64 \][/tex]
[tex]\[ 25b^2 = 64 \][/tex]

2. Solve for [tex]\( b^2 \)[/tex]: Next, divide both sides by 25 to isolate [tex]\( b^2 \)[/tex]:
[tex]\[ b^2 = \frac{64}{25} \][/tex]

3. Take the square root of both sides: We now take the square root of both sides to solve for [tex]\( b \)[/tex]:
[tex]\[ b = \pm \sqrt{\frac{64}{25}} \][/tex]
[tex]\[ b = \pm \frac{\sqrt{64}}{\sqrt{25}} \][/tex]
[tex]\[ b = \pm \frac{8}{5} \][/tex]

Therefore, the solutions to the equation [tex]\( 25b^2 - 64 = 0 \)[/tex] are:
[tex]\[ b = \frac{8}{5} \quad \text{and} \quad b = -\frac{8}{5} \][/tex]

Thus, the correct answer is:
[tex]\[ \frac{8}{5}, -\frac{8}{5} \][/tex]