What is the density of a 700 kg object with a volume of [tex]$649 \, m^3$[/tex]?

(Density: [tex]$D=\frac{m}{v}$[/tex])

A. [tex][tex]$0.927 \, kg/m^3$[/tex][/tex]
B. [tex]$0.4543 \, kg/m^3$[/tex]
C. [tex]$1.079 \, kg/m^3$[/tex]
D. [tex][tex]$4.543 \, kg/m^3$[/tex][/tex]



Answer :

Let's solve the problem of finding the density of a 700 kg object with a volume of 649 m³. The formula for density [tex]\(D\)[/tex] is given by:

[tex]\[ D = \frac{m}{v} \][/tex]

where:
- [tex]\( m \)[/tex] is the mass of the object,
- [tex]\( v \)[/tex] is the volume of the object.

Given:
- [tex]\( m = 700 \)[/tex] kg,
- [tex]\( v = 649 \)[/tex] m³,

we substitute these values into the density formula:

[tex]\[ D = \frac{700 \, \text{kg}}{649 \, \text{m}^3} \][/tex]

Perform the division to find the density:

[tex]\[ D \approx 1.078582434514638 \, \text{kg/m}^3 \][/tex]

Rounded to three decimal places, this value is:

[tex]\[ D \approx 1.079 \, \text{kg/m}^3 \][/tex]

Therefore, the density of the object is approximately [tex]\(1.079 \, \text{kg/m}^3\)[/tex]. Among the given options:

- [tex]\(0.927 \, \text{kg/m}^3\)[/tex]
- [tex]\(0.4543 \, \text{kg/m}^3\)[/tex]
- [tex]\(1.079 \, \text{kg/m}^3\)[/tex]
- [tex]\(4.543 \, \text{kg/m}^3\)[/tex]

The correct answer is [tex]\(1.079 \, \text{kg/m}^3\)[/tex].