For the function [tex]$f(x)=9^{-x}$[/tex], calculate the following function values:

[tex]\[
\begin{array}{l}
f(1)=\square \\
f(2)=\square
\end{array}
\][/tex]



Answer :

To find the values of the function [tex]\( f(x) = 9^{-x} \)[/tex] at specific points, we will substitute the values of [tex]\( x \)[/tex] into the function and calculate.

1. Calculating [tex]\( f(1) \)[/tex]:

[tex]\[ f(1) = 9^{-1} \][/tex]

The expression [tex]\( 9^{-1} \)[/tex] is equivalent to the reciprocal of 9:

[tex]\[ 9^{-1} = \frac{1}{9} \][/tex]

Thus,

[tex]\[ f(1) = \frac{1}{9} \approx 0.1111111111111111 \][/tex]

2. Calculating [tex]\( f(2) \)[/tex]:

[tex]\[ f(2) = 9^{-2} \][/tex]

The expression [tex]\( 9^{-2} \)[/tex] is equivalent to the reciprocal of [tex]\( 9^2 \)[/tex], since negative exponents indicate reciprocals:

[tex]\[ 9^{-2} = \frac{1}{9^2} = \frac{1}{81} \][/tex]

Thus,

[tex]\[ f(2) = \frac{1}{81} \approx 0.012345679012345678 \][/tex]

So, the calculated function values are:

[tex]\[ \begin{array}{l} f(1)=0.1111111111111111 \\ f(2)=0.012345679012345678 \end{array} \][/tex]