Answer :
Sure, let's calculate the values step-by-step for the function [tex]\( f(x) = 4^x \)[/tex].
1. Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = 4^5 \][/tex]
2. Calculate [tex]\( 4^5 \)[/tex]:
[tex]\[ 4^5 = 4 \times 4 \times 4 \times 4 \times 4 \][/tex]
By multiplying the numbers, we get:
[tex]\[ 4 \times 4 = 16 \quad \text{(first pair)} \][/tex]
[tex]\[ 16 \times 4 = 64 \quad \text{(second pair)} \][/tex]
[tex]\[ 64 \times 4 = 256 \quad \text{(third pair)} \][/tex]
[tex]\[ 256 \times 4 = 1024 \quad \text{(fourth pair)} \][/tex]
Therefore:
[tex]\[ f(5) = 1024 \][/tex]
3. Calculate [tex]\( f(6) \)[/tex]:
[tex]\[ f(6) = 4^6 \][/tex]
4. Calculate [tex]\( 4^6 \)[/tex]:
[tex]\[ 4^6 = 4 \times 4 \times 4 \times 4 \times 4 \times 4 \][/tex]
By multiplying the numbers, we get:
[tex]\[ 4 \times 4 = 16 \quad \text{(first pair)} \][/tex]
[tex]\[ 16 \times 4 = 64 \quad \text{(second pair)} \][/tex]
[tex]\[ 64 \times 4 = 256 \quad \text{(third pair, as before)} \][/tex]
[tex]\[ 256 \times 4 = 1024 \quad \text{(fourth pair, as before)} \][/tex]
[tex]\[ 1024 \times 4 = 4096 \quad \text{(fifth pair)} \][/tex]
Therefore:
[tex]\[ f(6) = 4096 \][/tex]
To summarize the results:
[tex]\[ f(5) = 1024 \][/tex]
[tex]\[ f(6) = 4096 \][/tex]
1. Calculate [tex]\( f(5) \)[/tex]:
[tex]\[ f(5) = 4^5 \][/tex]
2. Calculate [tex]\( 4^5 \)[/tex]:
[tex]\[ 4^5 = 4 \times 4 \times 4 \times 4 \times 4 \][/tex]
By multiplying the numbers, we get:
[tex]\[ 4 \times 4 = 16 \quad \text{(first pair)} \][/tex]
[tex]\[ 16 \times 4 = 64 \quad \text{(second pair)} \][/tex]
[tex]\[ 64 \times 4 = 256 \quad \text{(third pair)} \][/tex]
[tex]\[ 256 \times 4 = 1024 \quad \text{(fourth pair)} \][/tex]
Therefore:
[tex]\[ f(5) = 1024 \][/tex]
3. Calculate [tex]\( f(6) \)[/tex]:
[tex]\[ f(6) = 4^6 \][/tex]
4. Calculate [tex]\( 4^6 \)[/tex]:
[tex]\[ 4^6 = 4 \times 4 \times 4 \times 4 \times 4 \times 4 \][/tex]
By multiplying the numbers, we get:
[tex]\[ 4 \times 4 = 16 \quad \text{(first pair)} \][/tex]
[tex]\[ 16 \times 4 = 64 \quad \text{(second pair)} \][/tex]
[tex]\[ 64 \times 4 = 256 \quad \text{(third pair, as before)} \][/tex]
[tex]\[ 256 \times 4 = 1024 \quad \text{(fourth pair, as before)} \][/tex]
[tex]\[ 1024 \times 4 = 4096 \quad \text{(fifth pair)} \][/tex]
Therefore:
[tex]\[ f(6) = 4096 \][/tex]
To summarize the results:
[tex]\[ f(5) = 1024 \][/tex]
[tex]\[ f(6) = 4096 \][/tex]