For the function [tex]$f(x)=2^{x-1}$[/tex], calculate the following function values:

1. [tex]f(3)=[/tex] [tex]$\square$[/tex]

2. [tex]f(5)=[/tex] [tex]$\square$[/tex]



Answer :

To find the values of the function [tex]\( f(x) = 2^{x-1} \)[/tex] at specific points, follow these steps:

1. Calculate [tex]\( f(3) \)[/tex]:
- Substitute [tex]\( x = 3 \)[/tex] into the function [tex]\( f(x) \)[/tex].
- So, [tex]\( f(3) = 2^{3-1} \)[/tex].
- Simplify the exponent: [tex]\( 3 - 1 = 2 \)[/tex].
- Thus, [tex]\( f(3) = 2^2 \)[/tex].
- Calculate [tex]\( 2^2 \)[/tex]: [tex]\( 2 \times 2 = 4 \)[/tex].

Therefore, [tex]\( f(3) = 4 \)[/tex].

2. Calculate [tex]\( f(5) \)[/tex]:
- Substitute [tex]\( x = 5 \)[/tex] into the function [tex]\( f(x) \)[/tex].
- So, [tex]\( f(5) = 2^{5-1} \)[/tex].
- Simplify the exponent: [tex]\( 5 - 1 = 4 \)[/tex].
- Thus, [tex]\( f(5) = 2^4 \)[/tex].
- Calculate [tex]\( 2^4 \)[/tex]: [tex]\( 2 \times 2 \times 2 \times 2 = 16 \)[/tex].

Therefore, [tex]\( f(5) = 16 \)[/tex].

In summary:
[tex]\[ \begin{align*} f(3) &= 4 \\ f(5) &= 16 \end{align*} \][/tex]