Condense the expression into a single logarithm and simplify.
[tex]\[
\log_3 6 - \log_3 4
\][/tex]

[tex]\[
\log_3 \left( \frac{6}{4} \right)
\][/tex]

[tex]\[
\log_3 \left( \frac{3}{2} \right)
\][/tex]



Answer :

To condense the given expression, we can use the properties of logarithms, specifically the quotient rule. The quotient rule states that [tex]\(\log_b(a) - \log_b(b) = \log_b\left(\frac{a}{b}\right)\)[/tex].

We are given:

[tex]\[ \log_3 6 - \log_3 4 \][/tex]

Using the quotient rule of logarithms:

[tex]\[ \log_3 6 - \log_3 4 = \log_3\left(\frac{6}{4}\right) \][/tex]

Hence, the expression condenses into a single logarithm as:

[tex]\[ \log_3\left(\frac{6}{4}\right) \][/tex]