Which expression is equivalent to [tex]4x + 6y - 8x[/tex]?

A. [tex]2(3y - 2x)[/tex]

B. [tex]2(4y - 2x)[/tex]

C. [tex]2(2x + 3y)[/tex]

D. [tex]2(3x - 2y)[/tex]



Answer :

To determine which expression is equivalent to [tex]\(4x + 6y - 8x\)[/tex], follow these steps:

1. Simplify the given expression:
[tex]\[ 4x + 6y - 8x \][/tex]

Combine the like terms involving [tex]\(x\)[/tex]:
[tex]\[ 4x - 8x + 6y = -4x + 6y \][/tex]

The simplified expression is:
[tex]\[ -4x + 6y \][/tex]

2. Analyze each option provided to find the equivalent expression:

Option A: [tex]\(2(3y - 2x)\)[/tex]
[tex]\[ 2(3y - 2x) = 2 \cdot 3y - 2 \cdot 2x = 6y - 4x \][/tex]
This simplifies to:
[tex]\[ -4x + 6y \][/tex]

Option A is equivalent to the simplified expression [tex]\(-4x + 6y\)[/tex].

Option B: [tex]\(2(4y - 2x)\)[/tex]
[tex]\[ 2(4y - 2x) = 2 \cdot 4y - 2 \cdot 2x = 8y - 4x \][/tex]
This simplifies to:
[tex]\[ -4x + 8y \][/tex]

Option B is not equivalent to [tex]\(-4x + 6y\)[/tex].

Option C: [tex]\(2(2x + 3y)\)[/tex]
[tex]\[ 2(2x + 3y) = 2 \cdot 2x + 2 \cdot 3y = 4x + 6y \][/tex]
This simplifies to:
[tex]\[ 4x + 6y \][/tex]

Option C is not equivalent to [tex]\(-4x + 6y\)[/tex].

Option D: [tex]\(2(3x - 2y)\)[/tex]
[tex]\[ 2(3x - 2y) = 2 \cdot 3x - 2 \cdot 2y = 6x - 4y \][/tex]
This simplifies to:
[tex]\[ 6x - 4y \][/tex]

Option D is not equivalent to [tex]\(-4x + 6y\)[/tex].

Therefore, the expression that is equivalent to [tex]\(4x + 6y - 8x\)[/tex] is Option A: [tex]\(2(3y - 2x)\)[/tex].