To determine the product of [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex], let's calculate step-by-step:
1. First, multiply [tex]\(\frac{7}{16}\)[/tex] by [tex]\(\frac{4}{3}\)[/tex]:
[tex]\[
\frac{7}{16} \cdot \frac{4}{3} = \frac{7 \times 4}{16 \times 3} = \frac{28}{48}
\][/tex]
Simplify [tex]\(\frac{28}{48}\)[/tex] by dividing both the numerator and the denominator by their greatest common divisor (4):
[tex]\[
\frac{28}{48} = \frac{28 \div 4}{48 \div 4} = \frac{7}{12}
\][/tex]
2. Next, multiply the result [tex]\(\frac{7}{12}\)[/tex] by [tex]\(\frac{1}{2}\)[/tex]:
[tex]\[
\frac{7}{12} \cdot \frac{1}{2} = \frac{7 \times 1}{12 \times 2} = \frac{7}{24}
\][/tex]
Therefore, the product of [tex]\(\frac{7}{16}\)[/tex], [tex]\(\frac{4}{3}\)[/tex], and [tex]\(\frac{1}{2}\)[/tex] is [tex]\(\frac{7}{24}\)[/tex].
The best answer is:
B. [tex]\(\frac{7}{24}\)[/tex]