Recall the equation [tex]M_1 V_1 = M_2 V_2[/tex]. Based on the presence of this amount of copper sulfate, complete the table to predict the concentration of the solution as water is added to the tank or removed from it. Type the correct answer in each box. Use numerals instead of words. Express each answer to two significant figures.

\begin{tabular}{|l|l|}
\hline
\begin{tabular}{c}
Volume \\
(L)
\end{tabular} & \begin{tabular}{c}
Concentration \\
(mol/L)
\end{tabular} \\
\hline 1.0 & \\
\hline 0.80 & \\
\hline 0.60 & \\
\hline 0.50 & \\
\hline 0.40 & \\
\hline 0.20 & \\
\hline
\end{tabular}



Answer :

Sure! To complete the table for predicting the concentration of the solution as water is added or removed from the tank, we can use the dilution equation [tex]\(M_1 V_1 = M_2 V_2\)[/tex]. This equation implies that the product of the initial concentration and volume equals the product of the final concentration and volume.

Given the initial concentration [tex]\(M_1\)[/tex] and volume [tex]\(V_1\)[/tex]:
- [tex]\(M_1 = 1.0\, \text{mol/L}\)[/tex]
- [tex]\(V_1 = 1.0\, \text{L}\)[/tex]

We can find the new concentration [tex]\(M_2\)[/tex] for different volumes [tex]\(V_2\)[/tex].

[tex]\[ M_2 = \frac{M_1 \times V_1}{V_2} \][/tex]

Using this equation, we can calculate [tex]\(M_2\)[/tex] for each given volume [tex]\(V_2\)[/tex]:

1. For [tex]\(V_2 = 1.0\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{1.0\, \text{L}} = 1.0\, \text{mol/L} \][/tex]

2. For [tex]\(V_2 = 0.80\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{0.80\, \text{L}} = 1.25\, \text{mol/L} \][/tex]

3. For [tex]\(V_2 = 0.60\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{0.60\, \text{L}} = 1.67\, \text{mol/L} \][/tex]

4. For [tex]\(V_2 = 0.50\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{0.50\, \text{L}} = 2.0\, \text{mol/L} \][/tex]

5. For [tex]\(V_2 = 0.40\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{0.40\, \text{L}} = 2.5\, \text{mol/L} \][/tex]

6. For [tex]\(V_2 = 0.20\, \text{L}\)[/tex]:
[tex]\[ M_2 = \frac{1.0\, \text{mol/L} \times 1.0\, \text{L}}{0.20\, \text{L}} = 5.0\, \text{mol/L} \][/tex]

Hence, the completed table is:

[tex]\[ \begin{array}{|l|l|} \hline \text{Volume (L)} & \text{Concentration (mol/L)} \\ \hline 1.0 & 1.0 \\ \hline 0.80 & 1.25 \\ \hline 0.60 & 1.67 \\ \hline 0.50 & 2.0 \\ \hline 0.40 & 2.5 \\ \hline 0.20 & 5.0 \\ \hline \end{array} \][/tex]

This table provides the predicted concentrations of the solution for various volumes of the tank.