Answer :
To find the cofactors of each entry in the first row of the given matrix [tex]\( A = \left[\begin{array}{ccc} 3 & 1 & 4 \\ 1 & -4 & 7 \\ 6 & 3 & -2 \end{array}\right] \)[/tex], we will denote the cofactors as [tex]\( AC_{ij} \)[/tex], where [tex]\( i \)[/tex] and [tex]\( j \)[/tex] represent the row and column indices, respectively.
Let's compute the cofactors for the first row.
### 1. [tex]\( AC_{11} \)[/tex]
To find [tex]\( AC_{11} \)[/tex], we need to eliminate the first row and the first column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} -4 & 7 \\ 3 & -2 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (-4 \times -2) - (7 \times 3) = 8 - 21 = -13 \][/tex]
Therefore, the cofactor [tex]\( AC_{11} = -13 \)[/tex].
### 2. [tex]\( AC_{12} \)[/tex]
To find [tex]\( AC_{12} \)[/tex], we need to eliminate the first row and the second column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} 1 & 7 \\ 6 & -2 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (1 \times -2) - (7 \times 6) = -2 - 42 = -44 \][/tex]
Because [tex]\( AC_{12} \)[/tex] is in the second column of the first row, we need to take the negative of the determinant:
[tex]\[ AC_{12} = -(-44) = 44 \][/tex]
### 3. [tex]\( AC_{13} \)[/tex]
To find [tex]\( AC_{13} \)[/tex], we need to eliminate the first row and the third column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} 1 & -4 \\ 6 & 3 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (1 \times 3) - (-4 \times 6) = 3 + 24 = 27 \][/tex]
Therefore, the cofactor [tex]\( AC_{13} = 27 \)[/tex].
Putting it all together, we have:
[tex]\[ \begin{array}{l} A C_{11} = -13 \\ A C_{12} = 44 \\ A C_{13} = 27 \end{array} \][/tex]
Let's compute the cofactors for the first row.
### 1. [tex]\( AC_{11} \)[/tex]
To find [tex]\( AC_{11} \)[/tex], we need to eliminate the first row and the first column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} -4 & 7 \\ 3 & -2 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (-4 \times -2) - (7 \times 3) = 8 - 21 = -13 \][/tex]
Therefore, the cofactor [tex]\( AC_{11} = -13 \)[/tex].
### 2. [tex]\( AC_{12} \)[/tex]
To find [tex]\( AC_{12} \)[/tex], we need to eliminate the first row and the second column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} 1 & 7 \\ 6 & -2 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (1 \times -2) - (7 \times 6) = -2 - 42 = -44 \][/tex]
Because [tex]\( AC_{12} \)[/tex] is in the second column of the first row, we need to take the negative of the determinant:
[tex]\[ AC_{12} = -(-44) = 44 \][/tex]
### 3. [tex]\( AC_{13} \)[/tex]
To find [tex]\( AC_{13} \)[/tex], we need to eliminate the first row and the third column of matrix [tex]\( A \)[/tex], and then find the determinant of the resulting [tex]\( 2 \times 2 \)[/tex] matrix:
[tex]\[ \begin{vmatrix} 1 & -4 \\ 6 & 3 \end{vmatrix} \][/tex]
The determinant of this [tex]\(2 \times 2\)[/tex] matrix is:
[tex]\[ (1 \times 3) - (-4 \times 6) = 3 + 24 = 27 \][/tex]
Therefore, the cofactor [tex]\( AC_{13} = 27 \)[/tex].
Putting it all together, we have:
[tex]\[ \begin{array}{l} A C_{11} = -13 \\ A C_{12} = 44 \\ A C_{13} = 27 \end{array} \][/tex]