Solve [tex]$y=ax^2+c$[/tex] for [tex]$x$[/tex]:

A. [tex]$x= \pm \sqrt{ay-c}$[/tex]

B. [tex]$x= \pm \sqrt{\frac{y-c}{a}}$[/tex]

C. [tex][tex]$x=\sqrt{\frac{y}{a}-c}$[/tex][/tex]

D. [tex]$x=\sqrt{\frac{y+c}{a}}$[/tex]



Answer :

Let's solve the equation [tex]\( y = ax^2 + c \)[/tex] for [tex]\( x \)[/tex] step by step.

1. Isolate the term involving [tex]\( x \)[/tex]:
[tex]\[ y = ax^2 + c \][/tex]
Subtract [tex]\( c \)[/tex] from both sides:
[tex]\[ y - c = ax^2 \][/tex]

2. Solve for [tex]\( x^2 \)[/tex]:
Divide both sides by [tex]\( a \)[/tex]:
[tex]\[ \frac{y - c}{a} = x^2 \][/tex]

3. Solve for [tex]\( x \)[/tex]:
Take the square root of both sides. Remember, taking the square root yields two solutions, corresponding to the positive and negative square roots:
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]

Therefore, the solutions for [tex]\( x \)[/tex] are:
[tex]\[ x = \sqrt{\frac{y - c}{a}} \quad \text{and} \quad x = -\sqrt{\frac{y - c}{a}} \][/tex]

So, the complete solution to the equation [tex]\( y = ax^2 + c \)[/tex] for [tex]\( x \)[/tex] is:
[tex]\[ x = \pm \sqrt{\frac{y - c}{a}} \][/tex]