What is the missing coefficient?

[tex]\[
\left(15 x^2 + 11 y^2 + 8 x\right) - \left(7 x^2 + 5 y^2 + 2 x\right) = \square x^2 + 6 y^2 + 6 x
\][/tex]

A. 4

B. 8

C. 10

D. 22



Answer :

To find the missing coefficient in the given expression:

[tex]\[ (15x^2 + 11y^2 + 8x) - (7x^2 + 5y^2 + 2x) \][/tex]

we need to follow these steps:

1. Subtract the coefficients of [tex]\( x^2 \)[/tex]:
- Coefficient of [tex]\( x^2 \)[/tex] in the first expression: [tex]\( 15 \)[/tex]
- Coefficient of [tex]\( x^2 \)[/tex] in the second expression: [tex]\( 7 \)[/tex]
[tex]\[ 15 - 7 = 8 \][/tex]

2. Subtract the coefficients of [tex]\( y^2 \)[/tex]:
- Coefficient of [tex]\( y^2 \)[/tex] in the first expression: [tex]\( 11 \)[/tex]
- Coefficient of [tex]\( y^2 \)[/tex] in the second expression: [tex]\( 5 \)[/tex]
[tex]\[ 11 - 5 = 6 \][/tex]

3. Subtract the coefficients of [tex]\( x \)[/tex]:
- Coefficient of [tex]\( x \)[/tex] in the first expression: [tex]\( 8 \)[/tex]
- Coefficient of [tex]\( x \)[/tex] in the second expression: [tex]\( 2 \)[/tex]
[tex]\[ 8 - 2 = 6 \][/tex]

Putting everything together, the resulting expression after subtraction is:

[tex]\[ (15x^2 + 11y^2 + 8x) - (7x^2 + 5y^2 + 2x) = 8x^2 + 6y^2 + 6x \][/tex]

Therefore, the missing coefficient in the expression is [tex]\( 8 \)[/tex].