What is the cube root of [tex]$-1,000 p^{12} q^3$[/tex]?

A. [tex]-10 p^4[/tex]

B. [tex]-10 p^4 q[/tex]

C. [tex]10 p^4[/tex]

D. [tex]10 p^4 q[/tex]



Answer :

To determine the cube root of the expression [tex]\(-1,000 p^{12} q^3\)[/tex], we need to take the cube root of each individual component separately. Let's break it down step-by-step:

### Step-by-Step Solution:

1. Cube Root of [tex]\(-1,000\)[/tex]:
[tex]\[ \sqrt[3]{-1,000} = -10 \][/tex]
This is because [tex]\((-10)^3 = -1,000\)[/tex].

2. Cube Root of [tex]\(p^{12}\)[/tex]:
[tex]\[ \sqrt[3]{p^{12}} = p^{4} \][/tex]
This is because [tex]\((p^4)^3 = p^{12}\)[/tex].

3. Cube Root of [tex]\(q^3\)[/tex]:
[tex]\[ \sqrt[3]{q^3} = q \][/tex]
This is because [tex]\(q^3\)[/tex] raised to the [tex]\(1/3\)[/tex] power is [tex]\(q\)[/tex].

### Combining the Results:

Now, we combine the cube roots of the individual components:

[tex]\[ \sqrt[3]{-1,000 p^{12} q^3} = \sqrt[3]{-1,000} \cdot \sqrt[3]{p^{12}} \cdot \sqrt[3]{q^3} = -10 \cdot p^4 \cdot q \][/tex]

### Final Answer:

Thus, the cube root of [tex]\(-1,000 p^{12} q^3\)[/tex] is:

[tex]\[ -10 p^4 q \][/tex]

So the correct answer is:
[tex]\[ \boxed{-10 p^4 q} \][/tex]