Select the correct answer.

Points B and C lie on a circle with center O and a radius of 15 units. If the length of arc BC is [tex]21 \pi[/tex] units, what is [tex]m \angle BOC[/tex] in radians?

A. [tex]0.7 \pi[/tex]
B. [tex]\frac{3}{5} \pi[/tex]
C. [tex]1.2 \pi[/tex]
D. [tex]\frac{7}{5} \pi[/tex]



Answer :

To find [tex]\( m \angle BOC \)[/tex], which is the measure of the angle subtended by the arc BC at the center O in radians, follow these steps:

1. Identify the given values:
- The radius of the circle, [tex]\( r \)[/tex], is 15 units.
- The length of the arc BC, [tex]\( L \)[/tex], is [tex]\( 21 \pi \)[/tex] units.

2. Understand the relationship:
The length of an arc in a circle is calculated using the formula
[tex]\[ L = r \times \theta \][/tex]
where [tex]\( L \)[/tex] is the arc length, [tex]\( r \)[/tex] is the radius, and [tex]\( \theta \)[/tex] is the central angle in radians.

3. Find the central angle [tex]\( \theta \)[/tex]:
Rearrange the arc length formula to solve for [tex]\( \theta \)[/tex]:
[tex]\[ \theta = \frac{L}{r} \][/tex]
Substitute the given values [tex]\( L = 21 \pi \)[/tex] and [tex]\( r = 15 \)[/tex]:
[tex]\[ \theta = \frac{21 \pi}{15} \][/tex]
Simplify the fraction:
[tex]\[ \theta = \frac{21 \pi}{15} = \frac{7}{5} \pi \][/tex]

Therefore, the measure of [tex]\( m \angle BOC \)[/tex] in radians is [tex]\( \frac{7}{5} \pi \)[/tex].

The correct answer is:
D. [tex]\( \frac{7}{5} \pi \)[/tex]