The domain of [tex]\( f(x) \)[/tex] is the set of all real values except 7, and the domain of [tex]\( g(x) \)[/tex] is the set of all real values except -3. Which of the following describes the domain of [tex]\( (g \circ f)(x) \)[/tex]?

A. All real values except [tex]\( x \neq 7 \)[/tex] and the [tex]\( x \)[/tex] for which [tex]\( f(x) \neq -3 \)[/tex]
B. All real values except [tex]\( x \neq -3 \)[/tex] and the [tex]\( x \)[/tex] for which [tex]\( f(x) \neq 7 \)[/tex]
C. All real values except [tex]\( x \neq -3 \)[/tex] and the [tex]\( x \)[/tex] for which [tex]\( f(x) \neq -3 \)[/tex]
D. All real values except [tex]\( x \neq 7 \)[/tex] and the [tex]\( x \)[/tex] for which [tex]\( f(x) \neq 7 \)[/tex]



Answer :

To determine the domain of the composition of two functions [tex]\( (g \circ f)(x) \)[/tex], we need to consider when each function is defined.

1. Domain of [tex]\( f(x) \)[/tex]:
- [tex]\( f(x) \)[/tex] is defined for all real values except [tex]\( x = 7 \)[/tex].
- So, the domain of [tex]\( f(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{ 7 \} \)[/tex].

2. Domain of [tex]\( g(x) \)[/tex]:
- [tex]\( g(x) \)[/tex] is defined for all real values except [tex]\( x = -3 \)[/tex].
- So, the domain of [tex]\( g(x) \)[/tex] is [tex]\( \mathbb{R} \setminus \{ -3 \} \)[/tex].

3. Domain of the composition [tex]\( (g \circ f)(x) = g(f(x)) \)[/tex]:
- For [tex]\( g(f(x)) \)[/tex] to be defined, two conditions must be met:
- [tex]\( f(x) \)[/tex] must be defined.
- [tex]\( g(y) \)[/tex] must be defined where [tex]\( y = f(x) \)[/tex].

- First, [tex]\( f(x) \)[/tex] must be defined, so [tex]\( x \neq 7 \)[/tex].

- Second, [tex]\( g(f(x)) \)[/tex] must be defined. Since [tex]\( g(y) \)[/tex] is not defined for [tex]\( y = -3 \)[/tex], we need to ensure that [tex]\( f(x) \neq -3 \)[/tex].

Therefore, the domain of [tex]\( (g \circ f)(x) \)[/tex] consists of all real numbers [tex]\( x \)[/tex] except where [tex]\( x = 7 \)[/tex] and where [tex]\( f(x) = -3 \)[/tex].

So, the correct description of the domain of [tex]\( (g \circ f)(x) \)[/tex] is:

All real values except [tex]\( x \neq 7 \)[/tex] and [tex]\( x \)[/tex] for which [tex]\( f(x) \neq -3 \)[/tex].