3. Lance and 7 other friends go to an activity center together. They each pay [tex]$5.95 for dinner, $[/tex]4 for laser tag, [tex]$3.60 for bowling shoes, and $[/tex]2.25 for video games.

The total amount they spent is:

[tex]\[ 8(5.95) + 8(4) + 8(3.60) + 8(2.25) \][/tex]

Rewrite the expression so that it only has one multiplication operation, then evaluate the expression.



Answer :

Sure! Let's go through the steps to simplify and evaluate the given expression for the total amount that Lance and his 7 friends spent at the activity center.

1. Identify the cost components per person:
- Dinner: [tex]$\$[/tex] 5.95[tex]$ - Laser tag: $[/tex]\[tex]$ 4$[/tex]
- Bowling shoes: [tex]$\$[/tex] 3.60[tex]$ - Video games: $[/tex]\[tex]$ 2.25$[/tex]

2. Rewrite the expression:
The problem gives us the total amount spent as:
[tex]\[ 8 \cdot (5.95) + 8 \cdot (4) + 8 \cdot (3.60) + 8 \cdot (2.25) \][/tex]

Using the distributive property, we can factor out the 8 since each person pays for each activity:
[tex]\[ 8 \cdot (5.95 + 4 + 3.60 + 2.25) \][/tex]

3. Evaluate the expression inside the parentheses first:
[tex]\[ 5.95 + 4 + 3.60 + 2.25 \][/tex]

Adding these costs together:
[tex]\[ 5.95 + 4 = 9.95 \][/tex]
[tex]\[ 9.95 + 3.60 = 13.55 \][/tex]
[tex]\[ 13.55 + 2.25 = 15.80 \][/tex]

So, the total cost per person is:
[tex]\[ 15.80 \][/tex]

4. Multiply this total cost per person by the number of people (8):
[tex]\[ 8 \cdot 15.80 \][/tex]

Therefore, evaluating this expression gives us:
[tex]\[ 8 \cdot 15.80 = 126.40 \][/tex]

So, Lance and his 7 friends spent a total of [tex]\( \boxed{126.40} \)[/tex] dollars.