Solve the inequality: [tex]3|m+7|+9\ \textless \ 30[/tex]

A. [tex]-14\ \textless \ m\ \textless \ 0[/tex]

B. [tex]m\ \textgreater \ 0[/tex] or [tex]m\ \textless \ -14[/tex]

C. [tex]m\ \textless \ 0[/tex]

D. [tex]-8\ \textless \ m\ \textless \ -6[/tex]



Answer :

Let's solve the inequality [tex]\(3|m+7| + 9 < 30\)[/tex] step by step.

Step 1: Subtract 9 from both sides of the inequality to isolate the absolute value expression.
[tex]\[ 3|m+7| + 9 < 30 \][/tex]
[tex]\[ 3|m+7| < 21 \][/tex]

Step 2: Divide both sides of the inequality by 3 to further isolate the absolute value.
[tex]\[ |m+7| < 7 \][/tex]

Step 3: The inequality [tex]\(|m+7| < 7\)[/tex] implies that the expression inside the absolute value is within 7 units of 0. This can be written as two separate inequalities:
[tex]\[ -7 < m + 7 < 7 \][/tex]

Step 4: Subtract 7 from all parts of the compound inequality to solve for [tex]\(m\)[/tex]:
[tex]\[ -7 - 7 < m + 7 - 7 < 7 - 7 \][/tex]
[tex]\[ -14 < m < 0 \][/tex]

So the solution to the inequality [tex]\(3|m+7| + 9 < 30\)[/tex] is:
[tex]\[ -14 < m < 0 \][/tex]

This means [tex]\(m\)[/tex] must be a value that lies strictly between -14 and 0.