Answer :
Let's proceed to calculate the mean weight for each group in all three randomizations, as well as the difference between the means, step-by-step.
### First Randomization
Group A weights: 13.6, 12.1, 15.9, 11.2, 9.7
Group B weights: 9.2, 8.2, 11.5, 13.8, 14.6
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{13.6 + 12.1 + 15.9 + 11.2 + 9.7}{5} = \frac{62.5}{5} = 12.5 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{9.2 + 8.2 + 11.5 + 13.8 + 14.6}{5} = \frac{57.3}{5} = 11.46 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 12.5 - 11.46 = 1.04 \][/tex]
Thus, for the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]
### Second Randomization
Group A weights: 8.2, 13.8, 15.9, 9.2, 9.7
Group B weights: 12.1, 14.6, 13.6, 11.2, 11.5
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 13.8 + 15.9 + 9.2 + 9.7}{5} = \frac{56.8}{5} = 11.36 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 14.6 + 13.6 + 11.2 + 11.5}{5} = \frac{63.0}{5} = 12.6 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.36 - 12.6 = -1.24 \][/tex]
Thus, for the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]
### Third Randomization
Group A weights: 8.2, 9.7, 11.5, 14.6, 15.9
Group B weights: 12.1, 13.8, 13.6, 11.2, 9.2
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 9.7 + 11.5 + 14.6 + 15.9}{5} = \frac{59.9}{5} = 11.98 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 13.8 + 13.6 + 11.2 + 9.2}{5} = \frac{59.9}{5} = 11.98 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.98 - 11.98 = 0.0 \][/tex]
Thus, for the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]
Now, summarizing the results:
1. After the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]
2. After the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]
3. After the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]
These are the mean weights and their differences for each randomization.
### First Randomization
Group A weights: 13.6, 12.1, 15.9, 11.2, 9.7
Group B weights: 9.2, 8.2, 11.5, 13.8, 14.6
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{13.6 + 12.1 + 15.9 + 11.2 + 9.7}{5} = \frac{62.5}{5} = 12.5 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{9.2 + 8.2 + 11.5 + 13.8 + 14.6}{5} = \frac{57.3}{5} = 11.46 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 12.5 - 11.46 = 1.04 \][/tex]
Thus, for the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]
### Second Randomization
Group A weights: 8.2, 13.8, 15.9, 9.2, 9.7
Group B weights: 12.1, 14.6, 13.6, 11.2, 11.5
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 13.8 + 15.9 + 9.2 + 9.7}{5} = \frac{56.8}{5} = 11.36 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 14.6 + 13.6 + 11.2 + 11.5}{5} = \frac{63.0}{5} = 12.6 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.36 - 12.6 = -1.24 \][/tex]
Thus, for the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]
### Third Randomization
Group A weights: 8.2, 9.7, 11.5, 14.6, 15.9
Group B weights: 12.1, 13.8, 13.6, 11.2, 9.2
1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 9.7 + 11.5 + 14.6 + 15.9}{5} = \frac{59.9}{5} = 11.98 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 13.8 + 13.6 + 11.2 + 9.2}{5} = \frac{59.9}{5} = 11.98 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.98 - 11.98 = 0.0 \][/tex]
Thus, for the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]
Now, summarizing the results:
1. After the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]
2. After the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]
3. After the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]
These are the mean weights and their differences for each randomization.