A random number generator assigned each pepper to one of two groups. The weights of the peppers in each group, given three randomizations, appear in the tables below.

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{First Randomization} \\
\hline Group A & Group B \\
\hline 13.6 & 9.2 \\
\hline 12.1 & 8.2 \\
\hline 15.9 & 11.5 \\
\hline 11.2 & 13.8 \\
\hline 9.7 & 14.6 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Second Randomization \\
\hline Group A & Group B \\
\hline 8.2 & 12.1 \\
\hline 13.8 & 14.6 \\
\hline 15.9 & 13.6 \\
\hline 9.2 & 11.2 \\
\hline 9.7 & 11.5 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{Third Randomization} \\
\hline Group A & Group B \\
\hline 8.2 & 12.1 \\
\hline 9.7 & 13.8 \\
\hline 11.5 & 13.6 \\
\hline 14.6 & 11.2 \\
\hline 15.9 & 9.2 \\
\hline
\end{tabular}

For each table, calculate the mean weight for each group, [tex]\bar{x}_A[/tex] and [tex]\bar{x}_B[/tex], and find the difference between the mean of group A and the mean of group B ([tex]\left(\bar{x}_A-\bar{x}_B\right)[/tex]).

Type the correct answer in each box.

1. After the first randomization, [tex]\bar{x}_A[/tex] is [tex]\square[/tex], [tex]\bar{x}_B[/tex] is [tex]\square[/tex], and [tex]\left(\bar{x}_A-\bar{x}_B\right)[/tex] is [tex]\square[/tex].

2. After the second randomization, [tex]\bar{x}_A[/tex] is [tex]\square[/tex], [tex]\bar{x}_B[/tex] is [tex]\square[/tex], and [tex]\left(\bar{x}_A-\bar{x}_B\right)[/tex] is [tex]\square[/tex].

3. After the third randomization, [tex]\bar{x}_A[/tex] is [tex]\square[/tex], [tex]\bar{x}_B[/tex] is [tex]\square[/tex], and [tex]\left(\bar{x}_A-\bar{x}_B\right)[/tex] is [tex]\square[/tex].



Answer :

Let's proceed to calculate the mean weight for each group in all three randomizations, as well as the difference between the means, step-by-step.

### First Randomization

Group A weights: 13.6, 12.1, 15.9, 11.2, 9.7
Group B weights: 9.2, 8.2, 11.5, 13.8, 14.6

1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{13.6 + 12.1 + 15.9 + 11.2 + 9.7}{5} = \frac{62.5}{5} = 12.5 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{9.2 + 8.2 + 11.5 + 13.8 + 14.6}{5} = \frac{57.3}{5} = 11.46 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 12.5 - 11.46 = 1.04 \][/tex]

Thus, for the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]

### Second Randomization

Group A weights: 8.2, 13.8, 15.9, 9.2, 9.7
Group B weights: 12.1, 14.6, 13.6, 11.2, 11.5

1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 13.8 + 15.9 + 9.2 + 9.7}{5} = \frac{56.8}{5} = 11.36 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 14.6 + 13.6 + 11.2 + 11.5}{5} = \frac{63.0}{5} = 12.6 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.36 - 12.6 = -1.24 \][/tex]

Thus, for the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]

### Third Randomization

Group A weights: 8.2, 9.7, 11.5, 14.6, 15.9
Group B weights: 12.1, 13.8, 13.6, 11.2, 9.2

1. Calculate the mean weight for Group A, [tex]\(\bar{x}_A\)[/tex]:
[tex]\[ \bar{x}_A = \frac{8.2 + 9.7 + 11.5 + 14.6 + 15.9}{5} = \frac{59.9}{5} = 11.98 \][/tex]
2. Calculate the mean weight for Group B, [tex]\(\bar{x}_B\)[/tex]:
[tex]\[ \bar{x}_B = \frac{12.1 + 13.8 + 13.6 + 11.2 + 9.2}{5} = \frac{59.9}{5} = 11.98 \][/tex]
3. Calculate the difference between the mean weights:
[tex]\[ \bar{x}_A - \bar{x}_B = 11.98 - 11.98 = 0.0 \][/tex]

Thus, for the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]

Now, summarizing the results:

1. After the first randomization:
- [tex]\(\bar{x}_A = 12.5\)[/tex]
- [tex]\(\bar{x}_B = 11.46\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 1.04\)[/tex]

2. After the second randomization:
- [tex]\(\bar{x}_A = 11.36\)[/tex]
- [tex]\(\bar{x}_B = 12.6\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = -1.24\)[/tex]

3. After the third randomization:
- [tex]\(\bar{x}_A = 11.98\)[/tex]
- [tex]\(\bar{x}_B = 11.98\)[/tex]
- [tex]\(\bar{x}_A - \bar{x}_B = 0.0\)[/tex]

These are the mean weights and their differences for each randomization.