Subtract the following polynomials, then place the answer in the proper location on the grid. Write the answer in descending powers of [tex]a[/tex].

Subtract: [tex]11a^2 + 42a - 6[/tex] from [tex]14a^2 - 24a + 7[/tex]

[tex]\[
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & ( & ) & . & - & + & 1 & 2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & a & b & c \\
\hline
\end{tabular}
\][/tex]



Answer :

Let's work through the problem step-by-step to subtract the given polynomials.

Given polynomials:
1. [tex]\(14a^2 - 24a + 7\)[/tex]
2. [tex]\(11a^2 + 42a - 6\)[/tex]

We need to subtract the second polynomial from the first polynomial. This means we need to perform the following operations on the corresponding coefficients:

### Step-by-Step Solution:

1. Subtract the coefficients of [tex]\(a^2\)[/tex]:
[tex]\[ 14a^2 - 11a^2 = 3a^2 \][/tex]

2. Subtract the coefficients of [tex]\(a\)[/tex]:
[tex]\[ -24a - 42a = -66a \][/tex]

3. Subtract the constant terms:
[tex]\[ 7 - (-6) = 7 + 6 = 13 \][/tex]

### Combine the results:
[tex]\[ 3a^2 - 66a + 13 \][/tex]

So, the polynomial resulting from the subtraction [tex]\( (14a^2 - 24a + 7) - (11a^2 + 42a - 6) \)[/tex] is [tex]\( \boxed{3a^2 - 66a + 13} \)[/tex].

Place this answer in descending powers of [tex]\(a\)[/tex], which is already in the correct format:
[tex]\[ 3a^2 - 66a + 13 \][/tex]