Answered

Use the balanced equation to answer the question.

[tex]C_2H_4(g) + 3 O_2(g) \xrightarrow{\Delta} 2 CO_2(g) + 2 H_2O(g)[/tex]

How many moles of [tex]H_2O[/tex] are formed from 0.60 moles of [tex]C_2H_4[/tex]? Be sure your answer has the correct number of significant figures.

[tex]\text{mol } H_2O[/tex]: [tex]$\square$[/tex]



Answer :

To determine the number of moles of [tex]\( H_2O \)[/tex] formed from a given amount of [tex]\( C_2H_4 \)[/tex], let's follow these step-by-step instructions:

1. Write the balanced equation:
[tex]\[ C_2H_4(g) + 3O_2(g) \rightarrow 2CO_2(g) + 2H_2O(g) \][/tex]

2. Identify the stoichiometric relationship between [tex]\(C_2H_4\)[/tex] and [tex]\(H_2O\)[/tex]:
According to the balanced equation, 1 mole of [tex]\( C_2H_4 \)[/tex] produces 2 moles of [tex]\( H_2O \)[/tex].

3. Given information:
The number of moles of [tex]\( C_2H_4 \)[/tex] is 0.60 moles.

4. Use stoichiometry to find the moles of [tex]\( H_2O \)[/tex]:
Since 1 mole of [tex]\( C_2H_4 \)[/tex] produces 2 moles of [tex]\( H_2O \)[/tex], multiply the moles of [tex]\( C_2H_4 \)[/tex] by the stoichiometric factor (2 moles [tex]\( H_2O \)[/tex] per 1 mole [tex]\( C_2H_4 \)[/tex]):

[tex]\[ \text{Moles of } H_2O = 0.60 \, \text{moles of } C_2H_4 \times \frac{2 \, \text{moles of } H_2O}{1 \, \text{mole of } C_2H_4} \][/tex]

[tex]\[ \text{Moles of } H_2O = 0.60 \times 2 = 1.2 \, \text{moles} \][/tex]

5. Adjust for significant figures:
The initial moles of [tex]\( C_2H_4 \)[/tex] (0.60) have two significant figures. Therefore, the final answer should also be reported with two significant figures.

Thus, the number of moles of [tex]\( H_2O \)[/tex] formed from 0.60 moles of [tex]\( C_2H_4 \)[/tex] is:
[tex]\[ \boxed{1.2 \, \text{moles} \, H_2O} \][/tex]