A circle is centered at [tex]\((-3, 2)\)[/tex] and has a radius of 2. Which of the following is the equation for this circle?

A. [tex]\((x+3)^2+(y-2)^2=2\)[/tex]

B. [tex]\((x-3)^2+(y+2)^2=4\)[/tex]

C. [tex]\((x+3)^2+(y-2)^2=4\)[/tex]

D. [tex]\((x-3)^2+(y+2)^2=2\)[/tex]



Answer :

To determine the equation of a circle centered at [tex]\((-3, 2)\)[/tex] with a radius of 2, we use the general form of the equation of a circle:

[tex]\[ (x - h)^2 + (y - k)^2 = r^2 \][/tex]

where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.

For the given circle:
- The center [tex]\((h, k)\)[/tex] is [tex]\((-3, 2)\)[/tex].
- The radius [tex]\(r\)[/tex] is 2.

Substitute these values into the equation:

1. Replace [tex]\(h\)[/tex] with [tex]\(-3\)[/tex], [tex]\(k\)[/tex] with 2, and [tex]\(r\)[/tex] with 2.

[tex]\[ (x - (-3))^2 + (y - 2)^2 = 2^2 \][/tex]

2. Simplify the expressions inside the parentheses:

[tex]\[ (x + 3)^2 + (y - 2)^2 = 4 \][/tex]

Hence, the correct equation that represents this circle is:

[tex]\[ (x + 3)^2 + (y - 2)^2 = 4 \][/tex]

Among the given options, this matches:

[tex]\[ (x + 3)^2 + (y - 2)^2 = 4 \][/tex]

Thus, the correct equation for the circle is the third option:

[tex]\[ \boxed{(x + 3)^2 + (y - 2)^2 = 4} \][/tex]