What is the volume of a cone with a radius of 6 cm and a height of 10 cm?

Use the formula [tex] V_{\text{cone}} = \frac{\pi r^2 h}{3} [/tex]. Keep your answer in terms of [tex] \pi [/tex].

A. [tex] 360 \pi \, \text{cm}^3 [/tex]
B. [tex] 2000 \pi \, \text{cm}^3 [/tex]
C. [tex] 120 \pi \, \text{cm}^3 [/tex]
D. [tex] 30 \pi \, \text{cm}^3 [/tex]



Answer :

To find the volume of a cone with a radius of 6 cm and a height of 10 cm, we will use the formula for the volume of a cone, which is given by:

[tex]\[ V = \frac{\pi r^2 h}{3} \][/tex]

Where:
- [tex]\( V \)[/tex] is the volume of the cone,
- [tex]\( r \)[/tex] is the radius of the base of the cone,
- [tex]\( h \)[/tex] is the height of the cone.

Substituting the given values into the formula:
- [tex]\( r = 6 \)[/tex] cm,
- [tex]\( h = 10 \)[/tex] cm,

[tex]\[ V = \frac{\pi (6)^2 (10)}{3} \][/tex]

First, we calculate the square of the radius:
[tex]\[ 6^2 = 36 \][/tex]

Then, we multiply this result by the height:
[tex]\[ 36 \times 10 = 360 \][/tex]

Now, we divide by 3 to get the volume:
[tex]\[ \frac{360}{3} = 120 \][/tex]

Hence, the volume of the cone is:
[tex]\[ 120 \pi \text{ cm}^3 \][/tex]

So, the correct answer is:

(C) [tex]\( 120 \pi \text{ cm}^3 \)[/tex]