d. [tex]\(\frac{13}{5} - \frac{2}{7} + \frac{3}{4}\)[/tex]

1. [tex]\(\frac{14}{9} - \frac{7}{8} + \frac{3}{7} + \frac{5}{4}\)[/tex]

m. [tex]\(\frac{4}{5} - \frac{1}{6} + \frac{5}{8} - \frac{2}{9}\)[/tex]

3. Leonel afirmó que José, Néstor y Antonio consumieron, cada uno, [tex]\(\frac{3}{7}\)[/tex], [tex]\(\frac{2}{5}\)[/tex], y [tex]\(\frac{1}{9}\)[/tex], respectivamente, de una misma pizza. ¿Puede estar equivocado Leonel? Explica.



Answer :

Sure, let's address each part of the problem step-by-step:

3. Leonel afirmó que José, Néstor y Antonio consumió cada uno [tex]\(\frac{3}{7}, \frac{2}{5}\)[/tex] y [tex]\(\frac{1}{9}\)[/tex], respectivamente, de una misma pizza, ¿puede estar equivocado Leonel? Explica.

Let's determine whether Leonel's claim that the total consumed portion of the pizza by José, Néstor, and Antonio does not exceed one whole pizza holds true.

1. Fraction Consumed by José:
[tex]\[ \frac{3}{7} \approx 0.428571 \][/tex]

2. Fraction Consumed by Néstor:
[tex]\[ \frac{2}{5} = 0.4 \][/tex]

3. Fraction Consumed by Antonio:
[tex]\[ \frac{1}{9} \approx 0.111111 \][/tex]

4. Total Fraction Consumed:
[tex]\[ \frac{3}{7} + \frac{2}{5} + \frac{1}{9} \approx 0.428571 + 0.4 + 0.111111 = 0.939682 \][/tex]

5. Comparison with One Whole Pizza:
[tex]\[ 0.939682 < 1 \][/tex]

Since the combined fraction consumed by all three (0.939682) is less than one, Leonel's statement is correct. José, Néstor, and Antonio together consumed less than one whole pizza. Hence, Leonel is not incorrect in his assertion.