Which of the following represents the factorization of the trinomial below?

[tex]\[ x^2 + 14x + 49 \][/tex]

A. [tex]\((x+2)(x+7)\)[/tex]

B. [tex]\((x+7)^2\)[/tex]

C. [tex]\((x-7)^2\)[/tex]

D. [tex]\((x-7)(x+7)\)[/tex]



Answer :

To factorize the given trinomial [tex]\( x^2 + 14x + 49 \)[/tex], we need to find two binomials that, when multiplied together, produce this trinomial.

Let's denote the trinomial as [tex]\( ax^2 + bx + c \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = 14 \)[/tex], and [tex]\( c = 49 \)[/tex].

### Step-by-Step Solution:

1. Identify the coefficients:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 14 \)[/tex]
- [tex]\( c = 49 \)[/tex]

2. Find the roots:
We need to find two numbers that multiply to [tex]\( a \cdot c = 1 \cdot 49 = 49 \)[/tex] and add up to [tex]\( b = 14 \)[/tex].

Those two numbers are [tex]\( 7 \)[/tex] and [tex]\( 7 \)[/tex], because:
- [tex]\( 7 \times 7 = 49 \)[/tex]
- [tex]\( 7 + 7 = 14 \)[/tex]

3. Express the middle term using these numbers:
Rewrite [tex]\( 14x \)[/tex] as [tex]\( 7x + 7x \)[/tex]:
[tex]\[ x^2 + 7x + 7x + 49 \][/tex]

4. Group the terms and factor by grouping:
[tex]\[ (x^2 + 7x) + (7x + 49) \][/tex]
Factor out the greatest common factor (GCF) in each group:
[tex]\[ x(x + 7) + 7(x + 7) \][/tex]

5. Factor out the common binomial:
Both terms have a common binomial factor [tex]\((x + 7)\)[/tex]:
[tex]\[ (x + 7)(x + 7) \][/tex]

6. Simplify the expression:
Since it is the same binomial repeated, it can be written as:
[tex]\[ (x + 7)^2 \][/tex]

Therefore, the factorization of the trinomial [tex]\( x^2 + 14x + 49 \)[/tex] is:
[tex]\[ (x + 7)^2 \][/tex]

### Conclusion:
The correct answer is [tex]\( \boxed{(x + 7)^2} \)[/tex], which corresponds to option B.