Answer :
Let's examine both volumes step-by-step to determine if Jude's calculations are correct.
### Volume of the Square Pyramid:
The formula for the volume of a square pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
1. Base Edge Length (a) = 7 inches
- The base area (B) of the square pyramid:
[tex]\[ \text{Base Area} = a^2 = 7^2 = 49 \text{ square inches} \][/tex]
2. Height (h) = 7 inches
- Now, calculate the volume of the pyramid:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 49 \times 7 \][/tex]
3. Calculate the volume:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 343 \][/tex]
[tex]\[ V_{\text{pyramid}} = 114.33 \approx 114 \text{ cubic inches} \][/tex] (Rounded to the nearest whole number)
### Volume of the Cylinder:
The formula for the volume of a cylinder is given by:
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times h \][/tex]
1. Radius (r) = 7 inches
2. Height (h) = 7 inches
- Now, calculate the volume of the cylinder:
[tex]\[ V_{\text{cylinder}} = \pi \times 7^2 \times 7 \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi \times 49 \times 7 \][/tex]
[tex]\[ V_{\text{cylinder}} = 343\pi \][/tex]
3. Using the value of [tex]\(\pi \approx 3.14\)[/tex] for practical calculations:
[tex]\[ V_{\text{cylinder}} ≈ 3.14 \times 343 \][/tex]
[tex]\[ V_{\text{cylinder}} ≈ 1078.22 \approx 1078 \text{ cubic inches} \][/tex] (Rounded to the nearest whole number)
### Comparison:
- Volume of the square pyramid [tex]\( \approx 114 \)[/tex] cubic inches.
- Volume of the cylinder [tex]\( \approx 1078 \)[/tex] cubic inches.
Conclusion:
Jude's statement that the volumes of both figures are equal is incorrect.
The correct conclusion based on the step-by-step calculations above is:
No, he made a mistake in solving for the volume of both figures.
### Volume of the Square Pyramid:
The formula for the volume of a square pyramid is given by:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times \text{base area} \times \text{height} \][/tex]
1. Base Edge Length (a) = 7 inches
- The base area (B) of the square pyramid:
[tex]\[ \text{Base Area} = a^2 = 7^2 = 49 \text{ square inches} \][/tex]
2. Height (h) = 7 inches
- Now, calculate the volume of the pyramid:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 49 \times 7 \][/tex]
3. Calculate the volume:
[tex]\[ V_{\text{pyramid}} = \frac{1}{3} \times 343 \][/tex]
[tex]\[ V_{\text{pyramid}} = 114.33 \approx 114 \text{ cubic inches} \][/tex] (Rounded to the nearest whole number)
### Volume of the Cylinder:
The formula for the volume of a cylinder is given by:
[tex]\[ V_{\text{cylinder}} = \pi \times r^2 \times h \][/tex]
1. Radius (r) = 7 inches
2. Height (h) = 7 inches
- Now, calculate the volume of the cylinder:
[tex]\[ V_{\text{cylinder}} = \pi \times 7^2 \times 7 \][/tex]
[tex]\[ V_{\text{cylinder}} = \pi \times 49 \times 7 \][/tex]
[tex]\[ V_{\text{cylinder}} = 343\pi \][/tex]
3. Using the value of [tex]\(\pi \approx 3.14\)[/tex] for practical calculations:
[tex]\[ V_{\text{cylinder}} ≈ 3.14 \times 343 \][/tex]
[tex]\[ V_{\text{cylinder}} ≈ 1078.22 \approx 1078 \text{ cubic inches} \][/tex] (Rounded to the nearest whole number)
### Comparison:
- Volume of the square pyramid [tex]\( \approx 114 \)[/tex] cubic inches.
- Volume of the cylinder [tex]\( \approx 1078 \)[/tex] cubic inches.
Conclusion:
Jude's statement that the volumes of both figures are equal is incorrect.
The correct conclusion based on the step-by-step calculations above is:
No, he made a mistake in solving for the volume of both figures.