Find the rate of change represented by the data in the table below.

[tex]\[
\begin{array}{c|ccccc}
x & -9 & -5 & -1 & 3 & 7 \\
\hline
y & 4 & 7 & 10 & 13 & 16
\end{array}
\][/tex]

Simplify your answer completely.

Rate of Change: [tex]$\frac{\text{change in } y}{\text{change in } x}$[/tex]



Answer :

To find the rate of change represented by the data in the table, follow these steps:

1. Identify the initial and final values:
- For [tex]\( x \)[/tex]: The initial value is [tex]\(-9\)[/tex] and the final value is [tex]\(7\)[/tex].
- For [tex]\( y \)[/tex]: The initial value is [tex]\(4\)[/tex] and the final value is [tex]\(16\)[/tex].

2. Calculate the change in [tex]\( y \)[/tex]:
[tex]\[ \Delta y = y_{\text{final}} - y_{\text{initial}} = 16 - 4 = 12 \][/tex]

3. Calculate the change in [tex]\( x \)[/tex]:
[tex]\[ \Delta x = x_{\text{final}} - x_{\text{initial}} = 7 - (-9) = 7 + 9 = 16 \][/tex]

4. Compute the rate of change:
[tex]\[ \text{Rate of Change} = \frac{\Delta y}{\Delta x} = \frac{12}{16} \][/tex]

5. Simplify the fraction:
[tex]\[ \frac{12}{16} = \frac{3}{4} = 0.75 \][/tex]

Thus, the rate of change represented by the data in the table is [tex]\(0.75\)[/tex].