What is the product?

[tex]\[ \left(3 a^2 b^7\right)\left(5 a^3 b^8\right) \][/tex]

A. [tex]\( 8 a^5 b^{15} \)[/tex]

B. [tex]\( 8 a^6 b^{56} \)[/tex]

C. [tex]\( 15 a^5 e^{15} \)[/tex]

D. [tex]\( 15 a^5 b^{56} \)[/tex]



Answer :

To find the product of the given expression [tex]\((3a^2b^7)(5a^3b^8)\)[/tex], we can follow these steps:

1. Identify the coefficients:
- The first term has a coefficient of 3.
- The second term has a coefficient of 5.

2. Multiply the coefficients:
[tex]\[ 3 \cdot 5 = 15 \][/tex]

3. Identify the exponents for [tex]\(a\)[/tex]:
- The first term has [tex]\(a^2\)[/tex].
- The second term has [tex]\(a^3\)[/tex].

4. Add the exponents for [tex]\(a\)[/tex]:
[tex]\[ 2 + 3 = 5 \][/tex]

5. Identify the exponents for [tex]\(b\)[/tex]:
- The first term has [tex]\(b^7\)[/tex].
- The second term has [tex]\(b^8\)[/tex].

6. Add the exponents for [tex]\(b\)[/tex]:
[tex]\[ 7 + 8 = 15 \][/tex]

7. Combine the results:
Substituting the multiplied coefficient and the summed exponents into the expression, we get:
[tex]\[ 15 \cdot a^5 \cdot b^{15} \][/tex]

Now, we compare this resulting expression with the given choices:
- [tex]\(8a^5b^{15}\)[/tex]
- [tex]\(8a^6b^{56}\)[/tex]
- [tex]\(15a^5e^{15}\)[/tex]
- [tex]\(15a^5b^{56}\)[/tex]

The correct choice that matches our resulting expression [tex]\(15a^5b^{15}\)[/tex] is not directly listed.

However, the correct product based on our calculations and the given options can be:
- [tex]\(\boxed{15 a^5 b^{15}}\)[/tex]

The correct simplification of [tex]\((3a^2b^7)(5a^3b^8)\)[/tex] results in the expression [tex]\(\color{red}{15 a^5 b^{15}}\)[/tex].

Thus, the product is [tex]\( \boxed{15 a^5 b^{15} }\)[/tex].