\begin{tabular}{|c|c|}
\hline Miles, [tex]$x$[/tex] & Total Cost, [tex]$f(x)$[/tex] \\
\hline 0 & [tex]$\$[/tex] 10[tex]$ \\
\hline 4 & $[/tex]\[tex]$ 12$[/tex] \\
\hline 8 & [tex]$\$[/tex] 14[tex]$ \\
\hline 12 & $[/tex]\[tex]$ 16$[/tex] \\
\hline
\end{tabular}

The table shows the miles and total cost of renting a moped. Which function [tex]$f(x)$[/tex] is represented in the table?

A) [tex]$f(x)=0.5 x+10$[/tex]

B) [tex]$f(x)=0.4 x+12$[/tex]

C) [tex]$f(x)=x+8$[/tex]

D) [tex]$f(x)=5 x-10$[/tex]



Answer :

To find which function [tex]\( f(x) \)[/tex] correctly represents the data given in the table, we can evaluate each function using the values of miles [tex]\( x \)[/tex] and see if the calculated costs match the provided total costs.

The table is given as follows:

[tex]\[ \begin{array}{|c|c|} \hline \text{Miles},\, x & \text{Total Cost},\, f(x) \\ \hline 0 & \$10 \\ \hline 4 & \$12 \\ \hline 8 & \$14 \\ \hline 12 & \$16 \\ \hline \end{array} \][/tex]

Let's check each proposed function:

### Option A: [tex]\( f(x) = 0.5x + 10 \)[/tex]

1. For [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = 0.5 \times 0 + 10 = 10 \][/tex]
Matches the table: [tex]\( \$10 \)[/tex].

2. For [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 0.5 \times 4 + 10 = 2 + 10 = 12 \][/tex]
Matches the table: [tex]\( \$. 12 \)[/tex].

3. For [tex]\( x = 8 \)[/tex]:
[tex]\[ f(8) = 0.5 \times 8 + 10 = 4 + 10 = 14 \][/tex]
Matches the table: [tex]\( \$. 14 \)[/tex].

4. For [tex]\( x = 12 \)[/tex]:
[tex]\[ f(12) = 0.5 \times 12 + 10 = 6 + 10 = 16 \][/tex]
Matches the table: [tex]\( \$. 16 \)[/tex].

Since all the evaluations match the values in the table, the correct function is:

[tex]\[ \boxed{f(x) = 0.5x + 10} \][/tex]