What is the product?

[tex]\left(3 a^2 b^4\right)\left(-8 a b^3\right)[/tex]

A. [tex]-24 a b[/tex]

B. [tex]-24 a^2 b^7[/tex]

C. [tex]-24 a^2 b^{12}[/tex]

D. [tex]-24 a^3 b^7[/tex]



Answer :

Certainly! Let's find the product of the given terms step-by-step.

We need to multiply the two algebraic expressions:
[tex]\[ \left(3 a^2 b^4\right)\left(-8 a b^3\right) \][/tex]

### 1. Multiply the coefficients:
The coefficients are:
[tex]\[ 3 \quad \text{and} \quad -8 \][/tex]

Multiplying these together, we get:
[tex]\[ 3 \times -8 = -24 \][/tex]

### 2. Calculate the exponents for [tex]\( a \)[/tex]:
The exponents of [tex]\( a \)[/tex] in the two terms are:
[tex]\[ 2 \quad \text{and} \quad 1 \][/tex]

Adding these together, we get:
[tex]\[ 2 + 1 = 3 \][/tex]

So, the exponent of [tex]\( a \)[/tex] in the product is [tex]\( 3 \)[/tex].

### 3. Calculate the exponents for [tex]\( b \)[/tex]:
The exponents of [tex]\( b \)[/tex] in the two terms are:
[tex]\[ 4 \quad \text{and} \quad 3 \][/tex]

Adding these together, we get:
[tex]\[ 4 + 3 = 7 \][/tex]

So, the exponent of [tex]\( b \)[/tex] in the product is [tex]\( 7 \)[/tex].

### 4. Combine everything into the final product:
Now we combine our results:
[tex]\[ -24 a^3 b^7 \][/tex]

Thus, the product is:
[tex]\[ \boxed{-24 a^3 b^7} \][/tex]