Simplify the algebraic expression:

[tex]\[ 15xy - 13 + 4x + 3y + xy + 21 \][/tex]

A) [tex]\[ 16xy + 12yx + 8 \][/tex]

B) [tex]\[ 23xy + 8 \][/tex]

C) [tex]\[ 16xy + 4x + 3y + 8 \][/tex]

D) [tex]\[ 15xy + 4x + 3y + 8 \][/tex]



Answer :

To simplify the algebraic expression [tex]\( 15xy - 13 + 4x + 3y + xy + 21 \)[/tex], we need to combine like terms. Here’s a step-by-step breakdown:

1. Identify like terms:
- Terms with [tex]\( xy \)[/tex]: [tex]\( 15xy \)[/tex] and [tex]\( xy \)[/tex]
- Constant terms: [tex]\(-13\)[/tex] and [tex]\(21\)[/tex]
- Terms with [tex]\( x \)[/tex]: [tex]\(4x\)[/tex]
- Terms with [tex]\( y \)[/tex]: [tex]\(3y\)[/tex]

2. Combine like terms:
- Combine [tex]\( 15xy \)[/tex] and [tex]\( xy \)[/tex]:
[tex]\[ 15xy + xy = 16xy \][/tex]

- Combine the constants [tex]\(-13\)[/tex] and [tex]\(21\)[/tex]:
[tex]\[ -13 + 21 = 8 \][/tex]

- The terms [tex]\( 4x \)[/tex] and [tex]\( 3y \)[/tex] remain as they are since there are no other similar terms to combine.

3. Reassemble the expression:
- After combining like terms, the expression becomes:
[tex]\[ 16xy + 4x + 3y + 8 \][/tex]

Thus, the simplified algebraic expression is [tex]\( 16xy + 4x + 3y + 8 \)[/tex].

Answer: C) [tex]\( 16xy + 4x + 3y + 8 \)[/tex]