Answer :

To rationalize the numerator of the given expression

[tex]\[ \frac{\sqrt[3]{2 x^5}}{3} \][/tex]

we need to simplify the cube root in the numerator. Let’s break it down step-by-step.

1. Identify the expression inside the cube root: [tex]\(2 x^5\)[/tex].

2. The cube root of a product can be separated into the product of the cube roots:

[tex]\[ \sqrt[3]{2 x^5} = \sqrt[3]{2} \cdot \sqrt[3]{x^5} \][/tex]

3. Now, we deal with each of these components separately:
- The cube root of 2 remains [tex]\(\sqrt[3]{2}\)[/tex].
- The cube root of [tex]\(x^5\)[/tex] can be written as [tex]\((x^5)^{1/3}\)[/tex].

4. Simplify the exponent part:

[tex]\[ (x^5)^{1/3} = x^{5 \cdot \frac{1}{3}} = x^{5/3} \][/tex]

5. Now combine the simplified components:

[tex]\[ \sqrt[3]{2 x^5} = \sqrt[3]{2} \cdot x^{5/3} \][/tex]

6. Substitute back into the original expression:

[tex]\[ \frac{\sqrt[3]{2 x^5}}{3} = \frac{\sqrt[3]{2} \cdot x^{5/3}}{3} \][/tex]

Therefore, the rationalized form of the numerator in this expression is:

[tex]\[ \frac{2^{1/3} \cdot x^{5/3}}{3} \][/tex]

So, the final form of the given expression, with the numerator rationalized, is:

[tex]\[ \frac{2^{1/3} \cdot x^{5/3}}{3} \][/tex]

This expression is now in a simpler, rationalized form.