This table contains data on the number of people visiting a historical landmark over a period of one week. Using technology, find the equation of the regression line for the following data. Round values to the nearest tenth if necessary.

\begin{tabular}{|l|l|}
\hline Day [tex]$(x)$[/tex] & Number of visitors [tex]$(y)$[/tex] \\
\hline 1 & 120 \\
\hline 2 & 124 \\
\hline 3 & 130 \\
\hline 4 & 131 \\
\hline 5 & 135 \\
\hline 6 & 132 \\
\hline 7 & 135 \\
\hline
\end{tabular}

A. [tex]$y=0.3x-41.1$[/tex]
B. [tex]$y=4x+116$[/tex]
C. [tex]$y=0.3x-29$[/tex]
D. [tex]$y=2.4x+120.1$[/tex]



Answer :

To find the equation of the regression line for the given data, we proceed as follows:

1. Organize the Data:
We have the following data from the table:
[tex]\[ \begin{array}{|c|c|} \hline \text{Day} (x) & \text{Number of visitors} (y) \\ \hline 1 & 120 \\ \hline 2 & 124 \\ \hline 3 & 130 \\ \hline 4 & 131 \\ \hline 5 & 135 \\ \hline 6 & 132 \\ \hline 7 & 135 \\ \hline \end{array} \][/tex]

2. Calculate the Regression Line:
To determine the regression line [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept, we use statistical methods to calculate:

- Slope ([tex]$m$[/tex])
- Intercept ([tex]$b$[/tex])

3. Resulting Calculation:
After performing the linear regression calculation:
[tex]\[ m \approx 2.4 \quad \text{(slope)} \][/tex]
[tex]\[ b \approx 120.1 \quad \text{(intercept)} \][/tex]

Hence, the equation of the regression line, rounded to the nearest tenth, is:
[tex]\[ y = 2.4x + 120.1 \][/tex]

4. Checking with Given Options:
Compare the derived equation with the given options:

A. [tex]\(y = 0.3x - 41.1\)[/tex]
B. [tex]\(y = 4x + 116\)[/tex]
C. [tex]\(y = 0.3x - 29\)[/tex]
D. [tex]\(y = 2.4x + 120.1\)[/tex]

The correct option matching our calculated regression line is:
[tex]\[ \boxed{D. \; y = 2.4x + 120.1} \][/tex]

Thus, the equation of the regression line for the data is [tex]\(\boxed{y = 2.4x + 120.1}\)[/tex].