Answered

Loren has samples of elements listed below at room temperature. He exposes the samples to the same heat source until each sample reaches a temperature of [tex]$90.0^{\circ} C$[/tex].

[tex]\[
\begin{array}{l}
10 \, \text{g of } \text{Al} (s) \left(C_p = 0.897 \, \text{J/g} \, ^{\circ}\text{C}\right) \\
10 \, \text{g of } \text{Ag} (s) \left(C_p = 0.234 \, \text{J/g} \, ^{\circ}\text{C}\right) \\
10 \, \text{g of } \text{Fe} (s) \left(C_p = 0.450 \, \text{J/g} \, ^{\circ}\text{C}\right) \\
10 \, \text{g of } \text{Zn} (s) \left(C_p = 0.387 \, \text{J/g} \, ^{\circ}\text{C}\right)
\end{array}
\][/tex]

From first to last, which lists the order in which these samples will reach [tex]$90.0^{\circ} C$[/tex]?

A. [tex]$\text{Al, Fe, Zn, Ag}$[/tex]
B. [tex]$\text{Ag, Zn, Fe, Al}$[/tex]
C. [tex]$\text{Al, Fe, Ag, Zn}$[/tex]
D. [tex]$\text{Ag, Al, Zn, Fe}$[/tex]



Answer :

To determine the order in which the samples reach [tex]\( 90.0^{\circ} \text{C} \)[/tex], we need to calculate the amount of heat required for each sample to go from room temperature (assumed to be [tex]\( 25.0^{\circ} \text{C} \)[/tex]) to [tex]\( 90.0^{\circ} \text{C} \)[/tex]. The heat required ([tex]\( q \)[/tex]) can be found using the formula:

[tex]\[ q = m \cdot C_p \cdot \Delta T \][/tex]

where:
- [tex]\( m \)[/tex] is the mass of the sample.
- [tex]\( C_p \)[/tex] is the specific heat capacity.
- [tex]\( \Delta T \)[/tex] is the change in temperature.

Let's calculate [tex]\( \Delta T \)[/tex] first:
[tex]\[ \Delta T = 90.0^{\circ} \text{C} - 25.0^{\circ} \text{C} = 65.0^{\circ} \text{C} \][/tex]

Given data:
- Mass of each sample, [tex]\( m = 10 \, \text{g} \)[/tex]
- Specific heat capacities ([tex]\( C_p \)[/tex]):
- Aluminum (Al): [tex]\( 0.897 \, \text{J/(g°C)} \)[/tex]
- Silver (Ag): [tex]\( 0.234 \, \text{J/(g°C)} \)[/tex]
- Iron (Fe): [tex]\( 0.450 \, \text{J/(g°C)} \)[/tex]
- Zinc (Zn): [tex]\( 0.387 \, \text{J/(g°C)} \)[/tex]

Now we will calculate the heat required for each sample:

1. For Aluminum (Al):
[tex]\[ q_{\text{Al}} = 10 \, \text{g} \times 0.897 \, \text{J/(g°C)} \times 65.0^{\circ} \text{C} = 583.05 \, \text{J} \][/tex]

2. For Silver (Ag):
[tex]\[ q_{\text{Ag}} = 10 \, \text{g} \times 0.234 \, \text{J/(g°C)} \times 65.0^{\circ} \text{C} = 152.10 \, \text{J} \][/tex]

3. For Iron (Fe):
[tex]\[ q_{\text{Fe}} = 10 \, \text{g} \times 0.450 \, \text{J/(g°C)} \times 65.0^{\circ} \text{C} = 292.50 \, \text{J} \][/tex]

4. For Zinc (Zn):
[tex]\[ q_{\text{Zn}} = 10 \, \text{g} \times 0.387 \, \text{J/(g°C)} \times 65.0^{\circ} \text{C} = 251.55 \, \text{J} \][/tex]

Now we have the following heat requirements:
- [tex]\( q_{\text{Al}} = 583.05 \, \text{J} \)[/tex]
- [tex]\( q_{\text{Ag}} = 152.10 \, \text{J} \)[/tex]
- [tex]\( q_{\text{Fe}} = 292.50 \, \text{J} \)[/tex]
- [tex]\( q_{\text{Zn}} = 251.55 \, \text{J} \)[/tex]

To determine the order in which the samples will reach [tex]\( 90.0^{\circ} \text{C} \)[/tex], we order the samples by increasing heat required:
1. Silver (Ag): [tex]\( 152.10 \, \text{J} \)[/tex]
2. Zinc (Zn): [tex]\( 251.55 \, \text{J} \)[/tex]
3. Iron (Fe): [tex]\( 292.50 \, \text{J} \)[/tex]
4. Aluminum (Al): [tex]\( 583.05 \, \text{J} \)[/tex]

Thus, the order in which these samples will reach [tex]\( 90.0^{\circ} \text{C} \)[/tex] from first to last is:

[tex]\[ \boxed{\text{Ag , Zn , Fe , Al}} \][/tex]