What is the factored form of the expression [tex]2m^3 - 26m^2 + 80m[/tex]?

A. [tex]2m(m-5)(m-16)[/tex]

B. [tex]2m(m-20)(m-2)[/tex]

C. [tex]2m(m-5)(m-8)[/tex]

D. [tex]2m(m-4)(m-10)[/tex]



Answer :

To factor the expression [tex]\(2m^3 - 26m^2 + 80m\)[/tex], follow these steps:

1. Factor out the Greatest Common Factor (GCF):
The given expression is [tex]\(2m^3 - 26m^2 + 80m\)[/tex]. First, identify the greatest common factor in all terms, which is [tex]\(2m\)[/tex]. Factoring out [tex]\(2m\)[/tex], we get:
[tex]\[ 2m(m^2 - 13m + 40) \][/tex]

2. Factor the quadratic expression:
Now, we need to factor the quadratic expression [tex]\(m^2 - 13m + 40\)[/tex]. We are looking for two numbers that multiply to [tex]\(40\)[/tex] (the constant term) and add up to [tex]\(-13\)[/tex] (the coefficient of the linear term).

The two numbers that satisfy these conditions are [tex]\(-8\)[/tex] and [tex]\(-5\)[/tex]:
[tex]\[ -8 \times -5 = 40 \][/tex]
[tex]\[ -8 + -5 = -13 \][/tex]

3. Express the quadratic as a product:
We can now write the quadratic expression as a product of two binomials:
[tex]\[ m^2 - 13m + 40 = (m - 8)(m - 5) \][/tex]

4. Combine all factors:
Substitute this back into the factored form:
[tex]\[ 2m(m - 8)(m - 5) \][/tex]

So, the fully factored form of the expression [tex]\(2m^3 - 26m^2 + 80m\)[/tex] is:
[tex]\[ 2m(m - 8)(m - 5) \][/tex]

From the given options, the correct one is:
[tex]\[ 2m(m - 8)(m - 5) \][/tex]