Select the correct answer from each drop-down menu.

Use the remainder theorem to verify this statement: [tex]$(x+5)$[/tex] is a factor of the function [tex]$f(x)=x^3+3x^2-25x-75$[/tex].

1. Find the remainder of [tex]$f(x)$[/tex] when divided by [tex]$x+5$[/tex].
2. The result of this operation is 0.
3. Therefore, [tex]$(x+5)$[/tex] is a factor of the function [tex]$f(x)$[/tex].
4. So [tex]$f(-5) = 0$[/tex].



Answer :

Certainly! Let's walk through the steps to verify the statement using the Remainder Theorem.

1. Find the remainder of [tex]\(f(x)\)[/tex] divided by [tex]\(x+5\)[/tex].

To check if [tex]\(x+5\)[/tex] is a factor of [tex]\(f(x) = x^3 + 3x^2 - 25x - 75\)[/tex], we will use the Remainder Theorem. According to the Remainder Theorem, the remainder of dividing [tex]\(f(x)\)[/tex] by [tex]\(x + 5\)[/tex] is [tex]\(f(-5)\)[/tex].

2. The value of [tex]\(f(-5)\)[/tex]:

[tex]\[ f(-5) = (-5)^3 + 3(-5)^2 - 25(-5) - 75 \][/tex]
[tex]\[ = -125 + 3(25) + 125 - 75 \][/tex]
[tex]\[ = -125 + 75 + 125 - 75 \][/tex]
[tex]\[ = 0 \][/tex]

The result of this operation is 0.

3. Therefore, [tex]\((x + 5)\)[/tex] is a factor of function [tex]\(f(x)\)[/tex].

Since [tex]\(f(-5) = 0\)[/tex], by the Remainder Theorem, [tex]\((x + 5)\)[/tex] is indeed a factor of [tex]\(f(x)\)[/tex].

4. So, [tex]\(f(-5) = 0\)[/tex].

Putting these steps in the blanks:

1. Find the remainder of [tex]\(f(x)\)[/tex] and [tex]\(x+5\)[/tex].
2. The result of this operation is 0.
3. Therefore, [tex]\((x+5)\)[/tex] is a factor of function [tex]\(f(x)\)[/tex].
4. So [tex]\(f(-5) = 0\)[/tex].

This verifies that [tex]\((x+5)\)[/tex] is a factor of [tex]\(f(x)\)[/tex].