A sealed container can hold 0.325 L of gas at 1.00 atm and 293 K. Use the ideal gas law, [tex]PV = nRT[/tex], to calculate the number of moles of gas the container can hold.

Given:
[tex]
\begin{array}{c}
P = 1.00 \, \text{atm} \\
V = 0.325 \, \text{L} \\
R = 0.0821 \, \text{L} \cdot \text{atm} / \text{mol} \cdot \text{K} \\
T = 293 \, \text{K} \\
\end{array}
[/tex]

Calculate:
[tex] n = ? \, \text{mol} \]



Answer :

To find the number of moles of gas in a sealed container using the ideal gas law, follow these steps:

### Step-by-Step Solution:

1. Identify the Known Quantities and Variables:
- Pressure (P): [tex]\( 1.00 \)[/tex] atm
- Volume (V): [tex]\( 0.325 \)[/tex] liters
- Ideal Gas Constant (R): [tex]\( 0.0821 \)[/tex] L·atm / (mol·K)
- Temperature (T): [tex]\( 293 \)[/tex] Kelvin

2. Write Down the Ideal Gas Law Equation:
The ideal gas law is given by:
[tex]\[ PV = nRT \][/tex]
Where:
- [tex]\( P \)[/tex] is the pressure
- [tex]\( V \)[/tex] is the volume
- [tex]\( n \)[/tex] is the number of moles
- [tex]\( R \)[/tex] is the ideal gas constant
- [tex]\( T \)[/tex] is the temperature in Kelvin

3. Rearrange the Equation to Solve for [tex]\( n \)[/tex]:
We want to find [tex]\( n \)[/tex], the number of moles. Rearrange the equation to solve for [tex]\( n \)[/tex]:
[tex]\[ n = \frac{PV}{RT} \][/tex]

4. Substitute the Known Values into the Equation:
Substitute [tex]\( P \)[/tex], [tex]\( V \)[/tex], [tex]\( R \)[/tex], and [tex]\( T \)[/tex] into the rearranged equation:
[tex]\[ n = \frac{(1.00 \text{ atm}) \times (0.325 \text{ L})}{(0.0821 \text{ L·atm / (mol·K)}) \times (293 \text{ K})} \][/tex]

5. Calculate the Result:
Calculate the numerator and the denominator separately, then divide:
- Numerator: [tex]\( (1.00 \text{ atm}) \times (0.325 \text{ L}) = 0.325 \text{ L·atm} \)[/tex]
- Denominator: [tex]\( (0.0821 \text{ L·atm / (mol·K)}) \times (293 \text{ K}) = 24.0653 \text{ L·atm / mol} \)[/tex]
- Division: [tex]\( \frac{0.325 \text{ L·atm}}{24.0653 \text{ L·atm / mol}} = 0.0135105361396449 \text{ mol} \)[/tex]

Thus, the number of moles of gas that the container can hold is approximately:

[tex]\[ n = 0.0135105361396449 \text{ mol} \][/tex]

This result indicates that the sealed container, under the given conditions of pressure and temperature, can hold around [tex]\( 0.0135 \)[/tex] moles of gas.