To expand the binomial expression [tex]\left(2 x^3 + 3 y^2\right)^7[/tex] using the binomial theorem, what should be substituted for the values of [tex]a[/tex] and [tex]b[/tex]?

A. [tex]a = x^{10}[/tex] and [tex]b = y^9[/tex]

B. [tex]a = 2 x^3[/tex] and [tex]b = 3 y^2[/tex]

C. [tex]a = x^3[/tex] and [tex]b = y^2[/tex]

D. [tex]a = 2 x^{10}[/tex] and [tex]b = 3 y^9[/tex]



Answer :

To expand the binomial expression [tex]\((2x^3 + 3y^2)^7\)[/tex] using the binomial theorem, we need to identify the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] in the binomial [tex]\((a + b)^7\)[/tex].

Let's look at the expression [tex]\((2x^3 + 3y^2)\)[/tex]. Comparing it to the typical binomial form [tex]\((a + b)\)[/tex], we can see that:
- The first term [tex]\(2x^3\)[/tex] corresponds to [tex]\(a\)[/tex].
- The second term [tex]\(3y^2\)[/tex] corresponds to [tex]\(b\)[/tex].

Thus:
- The value of [tex]\(a\)[/tex] should be [tex]\(2x^3\)[/tex].
- The value of [tex]\(b\)[/tex] should be [tex]\(3y^2\)[/tex].

Hence, the correct substitution for the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] is:
[tex]\[ a = 2x^3 \][/tex]
[tex]\[ b = 3y^2 \][/tex]

So, the correct answer is:
[tex]\[ a = 2x^3 \quad \text{and} \quad b = 3y^2 \][/tex]