The magnetic field of a plane-polarized electromagnetic wave moving in the [tex]z[/tex]-direction is given by

[tex]\[ B = 1.2 \times 10^{-6} \sin \left[2 \pi\left(\frac{z}{240}-\frac{t \times 10^7}{8}\right)\right] \][/tex]

in SI units.

(a) What is the wavelength of the EM wave?

(b) What is the frequency of the EM wave?



Answer :

Certainly! Let's analyze the given equation for the magnetic field of the plane-polarized electromagnetic wave and extract the relevant information to determine the wavelength and frequency of the wave.

The magnetic field is given by:
[tex]\[ B = 1.2 \times 10^{-6} \sin \left[2 \pi \left(\frac{z}{240} - \frac{t \times 10^7}{8}\right)\right] \][/tex]

Let's break this down step-by-step:

### Part (a) - Wavelength of the EM Wave

The general form for a wave traveling in the [tex]\( z \)[/tex]-direction is:
[tex]\[ \sin \left(2 \pi \left(\frac{z}{\lambda} - f t\right)\right) \][/tex]

By comparing this with our given equation:
[tex]\[ \sin \left[2 \pi \left(\frac{z}{240} - \frac{t \times 10^7}{8}\right)\right] \][/tex]

We can identify that:
[tex]\[ \frac{z}{\lambda} = \frac{z}{240} \][/tex]

This implies:
[tex]\[ \lambda = 240 \, \text{meters} \][/tex]

Therefore, the wavelength ([tex]\(\lambda\)[/tex]) of the EM wave is:
[tex]\[ \lambda = 240 \, \text{meters} \][/tex]

### Part (b) - Frequency of the EM Wave

Next, we'll find the frequency [tex]\( f \)[/tex]. Again, comparing the general form with the given equation, we have:
[tex]\[ f t = \frac{t \times 10^7}{8} \][/tex]

This implies:
[tex]\[ f = \frac{10^7}{8} \, \text{s}^{-1} \][/tex]

Therefore, the frequency ([tex]\(f\)[/tex]) of the EM wave is:
[tex]\[ f = \frac{10^7}{8} \, \text{Hz} \][/tex]

Simplifying:
[tex]\[ f = 1.25 \times 10^6 \, \text{Hz} \][/tex]

Or in standard form:
[tex]\[ f = 1,250,000 \, \text{Hz} \][/tex]

In summary:
- The wavelength ([tex]\(\lambda\)[/tex]) of the EM wave is 240 meters.
- The frequency ([tex]\(f\)[/tex]) of the EM wave is 1,250,000 Hz (or 1.25 MHz).