Which relationship has a zero slope?

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 2 \\
\hline
-1 & 2 \\
\hline
1 & 2 \\
\hline
3 & 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 3 \\
\hline
-1 & 1 \\
\hline
1 & -1 \\
\hline
3 & -3 \\
\hline
\end{tabular}



Answer :

To determine which relationship has a zero slope, we need to calculate the slopes of the two given data sets.

### Data Set 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline 1 & 2 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]

### Data Set 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 3 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 3 & -3 \\ \hline \end{array} \][/tex]

#### Slope Calculation for Data Set 1

The slope is calculated using the formula:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]

For any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], [tex]\(\Delta y = y_2 - y_1\)[/tex] and [tex]\(\Delta x = x_2 - x_1\)[/tex].

Choosing the first two points from Data Set 1:
[tex]\[ (x_1, y_1) = (-3, 2) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 2) \][/tex]

[tex]\[ \Delta y = 2 - 2 = 0 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]

Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{0}{2} = 0 \][/tex]

Thus, the slope for Data Set 1 is [tex]\(0\)[/tex].

#### Slope Calculation for Data Set 2

Choosing the first two points from Data Set 2:
[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 1) \][/tex]

[tex]\[ \Delta y = 1 - 3 = -2 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]

Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{-2}{2} = -1 \][/tex]

Thus, the slope for Data Set 2 is [tex]\(-1\)[/tex].

### Conclusion

- The slope for Data Set 1 is [tex]\(0\)[/tex].
- The slope for Data Set 2 is [tex]\(-1\)[/tex].

A zero slope indicates a horizontal line. Therefore, the relationship represented by Data Set 1 has a zero slope.