Answer :
To determine which relationship has a zero slope, we need to calculate the slopes of the two given data sets.
### Data Set 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline 1 & 2 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
### Data Set 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 3 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 3 & -3 \\ \hline \end{array} \][/tex]
#### Slope Calculation for Data Set 1
The slope is calculated using the formula:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]
For any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], [tex]\(\Delta y = y_2 - y_1\)[/tex] and [tex]\(\Delta x = x_2 - x_1\)[/tex].
Choosing the first two points from Data Set 1:
[tex]\[ (x_1, y_1) = (-3, 2) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 2) \][/tex]
[tex]\[ \Delta y = 2 - 2 = 0 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]
Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{0}{2} = 0 \][/tex]
Thus, the slope for Data Set 1 is [tex]\(0\)[/tex].
#### Slope Calculation for Data Set 2
Choosing the first two points from Data Set 2:
[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 1) \][/tex]
[tex]\[ \Delta y = 1 - 3 = -2 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]
Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{-2}{2} = -1 \][/tex]
Thus, the slope for Data Set 2 is [tex]\(-1\)[/tex].
### Conclusion
- The slope for Data Set 1 is [tex]\(0\)[/tex].
- The slope for Data Set 2 is [tex]\(-1\)[/tex].
A zero slope indicates a horizontal line. Therefore, the relationship represented by Data Set 1 has a zero slope.
### Data Set 1
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 2 \\ \hline -1 & 2 \\ \hline 1 & 2 \\ \hline 3 & 2 \\ \hline \end{array} \][/tex]
### Data Set 2
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline -3 & 3 \\ \hline -1 & 1 \\ \hline 1 & -1 \\ \hline 3 & -3 \\ \hline \end{array} \][/tex]
#### Slope Calculation for Data Set 1
The slope is calculated using the formula:
[tex]\[ \text{slope} = \frac{\Delta y}{\Delta x} \][/tex]
For any two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex], [tex]\(\Delta y = y_2 - y_1\)[/tex] and [tex]\(\Delta x = x_2 - x_1\)[/tex].
Choosing the first two points from Data Set 1:
[tex]\[ (x_1, y_1) = (-3, 2) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 2) \][/tex]
[tex]\[ \Delta y = 2 - 2 = 0 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]
Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{0}{2} = 0 \][/tex]
Thus, the slope for Data Set 1 is [tex]\(0\)[/tex].
#### Slope Calculation for Data Set 2
Choosing the first two points from Data Set 2:
[tex]\[ (x_1, y_1) = (-3, 3) \][/tex]
[tex]\[ (x_2, y_2) = (-1, 1) \][/tex]
[tex]\[ \Delta y = 1 - 3 = -2 \][/tex]
[tex]\[ \Delta x = -1 - (-3) = -1 + 3 = 2 \][/tex]
Substitute these into the slope formula:
[tex]\[ \text{slope} = \frac{-2}{2} = -1 \][/tex]
Thus, the slope for Data Set 2 is [tex]\(-1\)[/tex].
### Conclusion
- The slope for Data Set 1 is [tex]\(0\)[/tex].
- The slope for Data Set 2 is [tex]\(-1\)[/tex].
A zero slope indicates a horizontal line. Therefore, the relationship represented by Data Set 1 has a zero slope.