The first two steps in determining the solution set of the system of equations, [tex]$y=x^2-6x+12$[/tex] and [tex]$y=2x-4$[/tex], algebraically are shown in the table.

\begin{tabular}{|c|c|}
\hline Step & Equation \\
\hline Step 1 & [tex]$x^2-6x+12=2x-4$[/tex] \\
\hline Step 2 & [tex][tex]$x^2-8x+16=0$[/tex][/tex] \\
\hline
\end{tabular}

Which represents the solution(s) of this system of equations?

A. (4, 4)
B. (-4, -12)
C. (4, 4) and (-4, 12)
D. (-4, 4) and (4, 12)



Answer :

Let's work through the given system of equations step-by-step to understand how to determine the solution(s).

We are given the system of equations:
[tex]\[ y = x^2 - 6x + 12 \][/tex]
[tex]\[ y = 2x - 4 \][/tex]

### Step 1: Set the equations equal to each other
Set the expressions for [tex]\( y \)[/tex] from both equations equal to each other:
[tex]\[ x^2 - 6x + 12 = 2x - 4 \][/tex]

### Step 2: Move all terms to one side to form a quadratic equation
Rearrange the terms to form a standard quadratic equation:
[tex]\[ x^2 - 6x + 12 - 2x + 4 = 0 \][/tex]
Combine like terms:
[tex]\[ x^2 - 8x + 16 = 0 \][/tex]

### Step 3: Solve the quadratic equation
We now have the quadratic equation:
[tex]\[ x^2 - 8x + 16 = 0 \][/tex]

To solve this quadratic equation, we can use the quadratic formula [tex]\( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex], where [tex]\( a = 1 \)[/tex], [tex]\( b = -8 \)[/tex], and [tex]\( c = 16 \)[/tex].

1. Calculate the discriminant [tex]\( \Delta = b^2 - 4ac \)[/tex]:
[tex]\[ \Delta = (-8)^2 - 4(1)(16) = 64 - 64 = 0 \][/tex]

Since the discriminant is 0, there is exactly one repeated real root.

2. Calculate the root:
[tex]\[ x = \frac{-(-8) \pm \sqrt{0}}{2(1)} = \frac{8 \pm 0}{2} = \frac{8}{2} = 4 \][/tex]

Thus, the value of [tex]\( x \)[/tex] is [tex]\( x = 4 \)[/tex].

### Step 4: Find the corresponding [tex]\( y \)[/tex] value
Substitute [tex]\( x = 4 \)[/tex] into the linear equation [tex]\( y = 2x - 4 \)[/tex]:
[tex]\[ y = 2(4) - 4 = 8 - 4 = 4 \][/tex]

So, the coordinate pair that satisfies both equations is [tex]\( (4, 4) \)[/tex].

### Conclusion
The system of equations has a single solution. The solution is:
[tex]\[ (4, 4) \][/tex]

Thus, the correct answer is:
[tex]\[ (4, 4) \][/tex]