Which represents the solution(s) of the graphed system of equations, [tex]y = x^2 + x - 2[/tex] and [tex]y = 2x - 2[/tex]?

A. [tex](-2, 0)[/tex] and [tex](0, 1)[/tex]
B. [tex](0, -2)[/tex] and [tex](1, 0)[/tex]



Answer :

To find the solution(s) of the graphed system of equations [tex]\(y = x^2 + x - 2\)[/tex] and [tex]\(y = 2x - 2\)[/tex], you need to determine the points where these two curves intersect.

Here is a step-by-step solution:

1. Set the equations equal to each other:
[tex]\[ x^2 + x - 2 = 2x - 2 \][/tex]

2. Rearrange the equation to set it to zero:
[tex]\[ x^2 + x - 2 - 2x + 2 = 0 \][/tex]
Simplify:
[tex]\[ x^2 - x = 0 \][/tex]

3. Factor the quadratic equation:
[tex]\[ x(x - 1) = 0 \][/tex]

4. Solve for [tex]\(x\)[/tex]:
This gives us two solutions:
[tex]\[ x = 0 \quad \text{or} \quad x = 1 \][/tex]

5. Substitute these [tex]\(x\)[/tex]-values into one of the original equations to find the corresponding [tex]\(y\)[/tex]-values.

For [tex]\(x = 0\)[/tex]:
[tex]\[ y = 2(0) - 2 = -2 \][/tex]

For [tex]\(x = 1\)[/tex]:
[tex]\[ y = 2(1) - 2 = 0 \][/tex]

Thus, the points of intersection are [tex]\((0, -2)\)[/tex] and [tex]\((1, 0)\)[/tex]. These are the solutions of the graphed system of equations.

Therefore, the solution is:
[tex]\[ (0, -2) \text{ and } (1, 0) \][/tex]