Use the quadratic formula to find the solutions to the quadratic equation below.

[tex]\[ 3x^2 - 5x + 4 = 0 \][/tex]

A. [tex]\[ x = \frac{5 \pm i \sqrt{23}}{6} \][/tex]

B. [tex]\[ x = \frac{5 \pm \sqrt{23}}{6} \][/tex]

C. [tex]\[ x = \frac{5 \pm i \sqrt{73}}{6} \][/tex]

D. [tex]\[ x = \frac{5 \pm \sqrt{73}}{6} \][/tex]



Answer :

To find the solutions to the quadratic equation [tex]\(3x^2 - 5x + 4 = 0\)[/tex], we'll use the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]. Let's identify the coefficients [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] in the equation:

[tex]\[ a = 3, \quad b = -5, \quad c = 4 \][/tex]

First, compute the discriminant [tex]\(\Delta\)[/tex]:

[tex]\[ \Delta = b^2 - 4ac = (-5)^2 - 4 \cdot 3 \cdot 4 = 25 - 48 = -23 \][/tex]

The discriminant [tex]\(\Delta\)[/tex] is negative, which indicates that the quadratic equation has two complex (non-real) roots. To find the solutions, we proceed as follows:

1. Compute the square root of the negative discriminant:
[tex]\[ \sqrt{\Delta} = \sqrt{-23} = i \sqrt{23} \][/tex]
Here, [tex]\(i\)[/tex] is the imaginary unit.

2. Substitute the values of [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(\sqrt{\Delta}\)[/tex] into the quadratic formula:
[tex]\[ x = \frac{-(-5) \pm \sqrt{-23}}{2 \cdot 3} = \frac{5 \pm i \sqrt{23}}{6} \][/tex]

So, the solutions to the quadratic equation [tex]\(3x^2 - 5x + 4 = 0\)[/tex] are:

[tex]\[ x = \frac{5 \pm i \sqrt{23}}{6} \][/tex]

Comparing this result with the given options, we see that option A matches our solutions:

A. [tex]\(x = \frac{5 \pm i \sqrt{23}}{6}\)[/tex]

Therefore, the correct answer is:

[tex]\[ \boxed{A} \][/tex]