Use the quadratic formula to find the solutions to the quadratic equation below. Check all that apply.

[tex]4x^2 - x - 5 = 0[/tex]

A. [tex]\frac{5}{4}[/tex]

B. [tex]\frac{3}{2}[/tex]

C. 1

D. -1

E. [tex]\frac{-4}{5}[/tex]

F. [tex]\frac{2}{3}[/tex]



Answer :

To solve the quadratic equation [tex]\(4x^2 - x - 5 = 0\)[/tex] using the quadratic formula, we use the formula:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

where [tex]\(a = 4\)[/tex], [tex]\(b = -1\)[/tex], and [tex]\(c = -5\)[/tex].

First, we compute the discriminant, which is given by:

[tex]\[ b^2 - 4ac \][/tex]

Substituting [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] into the discriminant formula:

[tex]\[ (-1)^2 - 4 \cdot 4 \cdot (-5) = 1 + 80 = 81 \][/tex]

So, the discriminant is 81.

Next, we apply the quadratic formula to find the solutions:

[tex]\[ x = \frac{-(-1) \pm \sqrt{81}}{2 \cdot 4} = \frac{1 \pm 9}{8} \][/tex]

This yields two possible solutions:

[tex]\[ x_1 = \frac{1 + 9}{8} = \frac{10}{8} = \frac{5}{4} = 1.25 \][/tex]

[tex]\[ x_2 = \frac{1 - 9}{8} = \frac{-8}{8} = -1 \][/tex]

Thus, the solutions to the quadratic equation [tex]\(4x^2 - x - 5 = 0\)[/tex] are [tex]\(x_1 = 1.25\)[/tex] and [tex]\(x_2 = -1\)[/tex].

Next, let's check the given options to see which of them apply:

A. [tex]\(\frac{5}{4}\)[/tex] [tex]\(\Rightarrow\)[/tex] Correct, as [tex]\(\frac{5}{4} = 1.25\)[/tex]

B. [tex]\(\frac{3}{2}\)[/tex] [tex]\(\Rightarrow\)[/tex] Incorrect

C. [tex]\(1\)[/tex] [tex]\(\Rightarrow\)[/tex] Incorrect

D. [tex]\(-1\)[/tex] [tex]\(\Rightarrow\)[/tex] Correct

E. [tex]\(\frac{-4}{5}\)[/tex] [tex]\(\Rightarrow\)[/tex] Incorrect

F. [tex]\(\frac{2}{3}\)[/tex] [tex]\(\Rightarrow\)[/tex] Incorrect

Therefore, the correct answers are:

- [tex]\( \boxed{\frac{5}{4}} \)[/tex]
- [tex]\( \boxed{-1} \)[/tex]