What is the correct partial fraction decomposition for
[tex]\[ \frac{16z^2 - 3z - 3}{(5z + 3)\left(z^2 - 2z + 3\right)} ? \][/tex]

Provide your answer below:
[tex]\[ \square + \square \][/tex]



Answer :

To find the partial fraction decomposition of the given expression:

[tex]\[ \frac{16 z^2 - 3 z - 3}{(5 z + 3)(z^2 - 2 z + 3)}, \][/tex]

we follow these steps:

1. Identify the form of the decomposition:

Since the denominator is factored as [tex]\( (5z + 3)(z^2 - 2z + 3) \)[/tex], the partial fraction decomposition will have the form:
[tex]\[ \frac{A}{5z + 3} + \frac{Bz + C}{z^2 - 2z + 3}, \][/tex]
where [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex] are constants to be determined.

2. Express the original fraction in terms of these constants:

[tex]\[ \frac{16z^2 - 3z - 3}{(5z + 3)(z^2 - 2z + 3)} = \frac{A}{5z + 3} + \frac{Bz + C}{z^2 - 2z + 3}. \][/tex]

3. Combine the right-hand side over a common denominator:

[tex]\[ \frac{A(z^2 - 2z + 3) + (Bz + C)(5z + 3)}{(5z + 3)(z^2 - 2z + 3)}. \][/tex]

4. Simplify the numerator:

[tex]\[ A(z^2 - 2z + 3) + (Bz + C)(5z + 3). \][/tex]

Expand and combine like terms:

[tex]\[ A(z^2 - 2z + 3) = Az^2 - 2Az + 3A, \][/tex]

[tex]\[ (Bz + C)(5z + 3) = Bz(5z) + Bz(3) + C(5z) + C(3) = 5Bz^2 + 3Bz + 5Cz + 3C. \][/tex]

Combining these:

[tex]\[ Az^2 - 2Az + 3A + 5Bz^2 + (3B + 5C)z + 3C. \][/tex]

Grouping the like terms:

[tex]\[ (A + 5B)z^2 + (-2A + 3B + 5C)z + (3A + 3C). \][/tex]

5. Equate coefficients to solve for [tex]\( A \)[/tex], [tex]\( B \)[/tex], and [tex]\( C \)[/tex]:

Compare with the numerator [tex]\( 16z^2 - 3z - 3 \)[/tex]:

[tex]\[ A + 5B = 16, \][/tex]
[tex]\[ -2A + 3B + 5C = -3, \][/tex]
[tex]\[ 3A + 3C = -3. \][/tex]

6. Solve the system of linear equations:

From [tex]\( 3A + 3C = -3 \)[/tex]:

[tex]\[ A + C = -1 \quad \text{(i)}. \][/tex]

From [tex]\( A + 5B = 16 \)[/tex]:

[tex]\[ A = 16 - 5B \quad \text{(ii)}. \][/tex]

Substitute [tex]\( A \)[/tex] from (ii) into (i):

[tex]\[ (16 - 5B) + C = -1, \][/tex]

[tex]\[ C = -17 + 5B \quad \text{(iii)}. \][/tex]

Substitute [tex]\( A \)[/tex] and [tex]\( C \)[/tex] into the second equation:

[tex]\[ -2(16 - 5B) + 3B + 5(-17 + 5B) = -3, \][/tex]

[tex]\[ -32 + 10B + 3B - 85 + 25B = -3, \][/tex]

[tex]\[ 38B - 117 = -3, \][/tex]

[tex]\[ 38B = 114, \][/tex]

[tex]\[ B = 3. \][/tex]

Substitute [tex]\( B = 3 \)[/tex] back into (ii) and (iii):

[tex]\[ A = 16 - 5(3) = 1, \][/tex]

[tex]\[ C = -17 + 5(3) = -2. \][/tex]

7. Construct the partial fractions:

[tex]\[ \frac{1}{5z + 3} + \frac{3z - 2}{z^2 - 2z + 3}. \][/tex]

Thus, the correct partial fraction decomposition is:

[tex]\[ \boxed{\frac{1}{5z + 3}} + \boxed{\frac{3z - 2}{z^2 - 2z + 3}}. \][/tex]