Answered

Type the correct answer in each box.

Create a matrix for this system of linear equations:
[tex]\[ \left\{
\begin{array}{l}
2x + y + 3z = 13 \\
x + 2y = 11 \\
3x + z = 10
\end{array}
\right. \][/tex]

The determinant of the coefficient matrix is [tex]$\square$[/tex]

[tex]\[
\begin{array}{l}
x = \square \\
y = \square \\
z = \square
\end{array}
\][/tex]



Answer :

To solve the given system of linear equations using matrix methods, we first need to represent the system in matrix form.

The system of equations is:
[tex]\[ \left\{\begin{array}{l} 2x + y + 3z = 13 \\ x + 2y = 11 \\ 3x + z = 10 \end{array}\right. \][/tex]

### Step 1: Create the coefficient matrix
The coefficient matrix [tex]\( A \)[/tex] and the right-hand side matrix [tex]\( B \)[/tex] are:
[tex]\[ A = \begin{bmatrix} 2 & 1 & 3 \\ 1 & 2 & 0 \\ 3 & 0 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 13 \\ 11 \\ 10 \end{bmatrix} \][/tex]

### Step 2: Calculate the determinant of the coefficient matrix
The determinant of the coefficient matrix [tex]\( A \)[/tex] is:
[tex]\[ \text{Det}(A) = -15.0 \][/tex]

### Step 3: Solve the system of linear equations
By solving the system, we determine the values of [tex]\( x \)[/tex], [tex]\( y \)[/tex], and [tex]\( z \)[/tex]:
[tex]\[ x = 3.0, \quad y = 4.0, \quad z = 1.0000000000000002 \][/tex]

### Conclusion
Therefore, the answers are:
[tex]\[ \text{The determinant of the coefficient matrix is } -15.0 \][/tex]
[tex]\[ \begin{aligned} x &= 3.0 \\ y &= 4.0 \\ z &= 1.0000000000000002 \end{aligned} \][/tex]