Select the correct answer.

[tex]$\overline{JK}$[/tex] is dilated by a scale factor of [tex]$n$[/tex] with the origin as the center of dilation, resulting in the image [tex]$\overline{J^{\prime}K^{\prime}}$[/tex]. The slope of [tex]$\overline{JK}$[/tex] is [tex]$m$[/tex]. If the length of [tex]$\overline{JK}$[/tex] is [tex]$l$[/tex], what is the length of [tex]$\overline{J^{\prime}K^{\prime}}$[/tex]?

A. [tex]$m \times n \times l$[/tex]

B. [tex]$(m+n) \times l$[/tex]

C. [tex]$m \times l$[/tex]

D. [tex]$n \times l$[/tex]



Answer :

To determine the length of the dilated segment [tex]\(\overline{J^{\prime}K^{\prime}}\)[/tex] after the dilation with a scale factor [tex]\(n\)[/tex], we must understand how dilation affects lengths.

Given the original length [tex]\(\overline{J K}\)[/tex] is [tex]\(I\)[/tex], and applying a dilation with a scale factor [tex]\(n\)[/tex] from the origin, the length of the image [tex]\(\overline{J^{\prime} K^{\prime}}\)[/tex] can be calculated as follows:

1. Identify the effect of dilation: A dilation with scale factor [tex]\(n\)[/tex] means that every distance from the origin is multiplied by [tex]\(n\)[/tex].
2. Apply the scale factor to the length: The original length [tex]\(\overline{J K}\)[/tex] is multiplied by [tex]\(n\)[/tex].

Thus, the length of the segment [tex]\(\overline{J^{\prime}K^{\prime}}\)[/tex] after dilation is given by:
[tex]\[ n \times I \][/tex]

From the choices provided:
A. [tex]\( m \times n \times 1 \)[/tex] \\
B. [tex]\( (m+n) \times 1 \)[/tex] \\
C. [tex]\( m \times 1 \)[/tex] \\
D. [tex]\( n \times 1 \)[/tex]

Here, [tex]\(I\)[/tex] is given as [tex]\(1\)[/tex].

So, substituting [tex]\(I = 1\)[/tex] into [tex]\( n \times I \)[/tex], we get:
[tex]\[ n \times 1 \][/tex]

The correct answer is:
[tex]\[ \boxed{D \; n \times 1} \][/tex]