What are the solutions of the system of equations

[tex]\[ y = (x + 4)^2 - 1 \][/tex]
[tex]\[ y = -3x - 13 \][/tex]

A. [tex]\((-7, -4)\)[/tex] and [tex]\((8, -1)\)[/tex]

B. [tex]\((-7, 8)\)[/tex] and [tex]\((-4, -1)\)[/tex]

C. [tex]\((-4, -7)\)[/tex] and [tex]\((-1, 8)\)[/tex]

D. [tex]\((8, -7)\)[/tex] and [tex]\((-1, -4)\)[/tex]



Answer :

To find the solutions to the system of equations:

[tex]\[ y = (x + 4)^2 - 1 \][/tex]
[tex]\[ y = -3x - 13 \][/tex]

we need to find the points [tex]\((x, y)\)[/tex] that satisfy both equations simultaneously. First, let's set these equations equal to each other:

[tex]\[ (x + 4)^2 - 1 = -3x - 13 \][/tex]

Now we need to solve for [tex]\(x\)[/tex]. Expand the left side and simplify:

[tex]\[ (x+4)^2 - 1 = x^2 + 8x + 16 - 1 = x^2 + 8x + 15 \][/tex]

So we have the equation:

[tex]\[ x^2 + 8x + 15 = -3x - 13 \][/tex]

Now, move all terms to one side to set the equation to zero:

[tex]\[ x^2 + 8x + 15 + 3x + 13 = 0 \][/tex]

Combine like terms:

[tex]\[ x^2 + 11x + 28 = 0 \][/tex]

Next, factor the quadratic equation:

[tex]\[ (x + 7)(x + 4) = 0 \][/tex]

This gives us the solutions for [tex]\(x\)[/tex]:

[tex]\[ x + 7 = 0 \quad \text{or} \quad x + 4 = 0 \][/tex]
[tex]\[ x = -7 \quad \text{or} \quad x = -4 \][/tex]

Now, we need to find the corresponding [tex]\(y\)[/tex]-values by substituting these [tex]\(x\)[/tex]-values back into either of the original equations. Let's use the second equation [tex]\( y = -3x - 13 \)[/tex].

For [tex]\( x = -7 \)[/tex]:

[tex]\[ y = -3(-7) - 13 \][/tex]
[tex]\[ y = 21 - 13 \][/tex]
[tex]\[ y = 8 \][/tex]

This gives us the point [tex]\((-7, 8)\)[/tex].

For [tex]\( x = -4 \)[/tex]:

[tex]\[ y = -3(-4) - 13 \][/tex]
[tex]\[ y = 12 - 13 \][/tex]
[tex]\[ y = -1 \][/tex]

This gives us the point [tex]\((-4, -1)\)[/tex].

So, the solutions to the system of equations are:

[tex]\[ (-7, 8) \quad \text{and} \quad (-4, -1) \][/tex]

Therefore, the solutions to this system of equations are [tex]\((-7, 8)\)[/tex] and [tex]\((-4, -1)\)[/tex].